एक गुलाबजामुन में उसके आयतन की लगभग $30 \%$ चीनी की चाशनी होती है। $45$ गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई $5 \ cm$ और व्यास $2.8 \ cm$ है $($देखिए आकृति$)।$
Exercise-12.2-3
Download our app for free and get startedPlay store
चूंकि गुलाबजामुन का आकार एक ऐसे बेलन जिसके दोनों सिरों पर अर्धगोले हों, के आकार का होता है।

गुलाबजामुन की ऊँचाई $= 5$ सेमी.
व्यास $= 2.8$ सेमी.
$\Rightarrow$ त्रिज्या $= \frac{2.8}{2}$ सेमी. $= 1.4$ सेमी.
चूँकि बेलनाकार भाग की लम्बाई $($ऊँचाई$) = 5$ सेमी. $- 2.8$ सेमी.$ = 2.2 $सेमी.
$\therefore$ बेलनाकार भाग का आयतन $= \pi r^{2} h$
चूंकि एक अर्धगोले का आयतन $= \frac{2}{3} \pi r^{3}$
$\therefore$ दोनों अर्धगोलों का आयतन $= 2\left(\frac{2}{3} \pi r^{3}\right)=\frac{4}{3} \pi r^{3}$
$\Rightarrow$ गुलाबजामुन का आयतन $= \pi r^{2} h+\frac{4}{3} \pi r^{3}$
$= \pi r^{2}\left[h+\frac{4}{3} r\right]$
$= \frac{22}{7} \times(1.4)^{2}\left[2.2+\frac{4}{3}(1.4)\right]$ सेमी$.^3$
$= \frac{22}{7} \times \frac{14}{10} \times \frac{14}{10}\left[\frac{22}{10}+\frac{56}{30}\right] $सेमी$.^3$
$= \frac{22 \times 2 \times 14}{10 \times 10}\left[\frac{66+56}{30}\right] $सेमी$.^3$
$= \frac{44 \times 14}{100} \times \frac{122}{30}$ सेमी$.^3$
$45$ गुलाबजामुनों का आयतन $= 45 \times\left[\frac{44 \times 14}{100} \times \frac{122}{30}\right]$ सेमी$.^3$
$= \frac{15 \times 44 \times 14 \times 122}{1000}$ सेमी$.^3$
चूंकि गुलाबजामुनों में चाशनी की मात्रा $=$ आयतन का $30 \%$ अर्थात
$= \left[\frac{15 \times 44 \times 14 \times 122}{1000}\right]$ सेमी$.^3$ का $30\%$
$= \frac{30}{100} \times \frac{15 \times 44 \times 14 \times 122}{1000}$ सेमी$.^3$
$= 388.184$ सेमी$.^3 = 338$ सेमी$.^3 ($लगभग$)$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    दवा का एक कैप्सूल $($capsule$)$ एक बेलन के आकार का है जिसके दोनों सिरों पर एक$-$एक अर्धगोला लगा हुआ है $($देखिए आकृति$)।$ पूरे कैप्सूल की लंबाई $14\ mm$ है और उसका व्यास $5 \ mm$ है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 2
    लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति में दर्शाया गया है। यदि बेलन की ऊँचाई $10 \ cm$ है और आधार की त्रिज्या $3.5 \ cm$ है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 3
    एक इंजीनियरिंग के विद्यार्थी रचेल से एक पतली एल्यूमीनियम की शीट का प्रयोग करते हुए एक मॉडल बनाने को कहा गया जो एक ऐसे बेलन के आकार का हो जिसके दोनों सिरों पर दो शंकु जुड़े हुए हों। इस मॉडल का व्यास $3 \ cm$ है और इसकी लंबाई $12 \ cm$ है। यदि प्रत्येक शंकु की ऊँचाई $2\ cm$ हो तो रचेल द्वारा बनाए गए मॉडल में अंतर्विष्ट हवा का आयतन ज्ञात कीजिए। $($यह मान लीजिए कि मॉडल की आंतरिक और बाहरी विमाएँ लगभग बराबर हैं$।)$
    View Solution
  • 4
    एक कलमदान घनाभ के आकार की एक लकड़ी से बना है जिसमें कलम रखने के लिए चार शंक्वाकार गड्ढे बने हुए हैं। घनाभ की विमाएँ $15 \ cm \times 10 \ cm \times 3.5 \ cm$ हैं। प्रत्येक गड्ढे की त्रिज्या $0.5 \ cm$ है और गहराई $1.4 \ cm$ है। पूरे कलमदान में लकड़ी का आयतन ज्ञात कीजिए $($देखिए आकृति$)$।
    View Solution
  • 5
    ऊँचाई $220 \ cm$ और आधार व्यास $24 \ cm$ वाले एक बेलन, जिस पर ऊँचाई $60 \ cm$ और त्रिज्या $8 \ cm$ वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तंभ बना है। इस स्तंभ का द्रव्यमान ज्ञात कीजिए, जबकि दिया है $1 \ cm^3$ लोहे का द्रव्यमान लगभग $8 g$ होता है। $(\pi = 3.14$ लीजिए।$)$
    View Solution
  • 6
    रशीद को जन्मदिन के उपहार के रूप में एक लट्ट् मिला, जिस पर रंग नहीं किया गया था। वह इस पर अपने मोमिया रंगों $($Crayons$)$ से रंग करना चाहता है। यह लट्टू एक शंकु के आकार का है जिसके ऊपर एक अर्धगोला अध्यारोपित है $($देखिए आकृति$)।$ लट्टू की पूरी ऊँचाई $5 \ cm$ है और इसका व्यास $3.5 \ cm$ है। उसके द्वारा रंग किया जाने वाला क्षेत्रफल ज्ञात कीजिए।$ (\pi=\frac{22}{7}$ लीजिए।$)$
    View Solution
  • 7
    कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमशः $2.1 m$ और $4 m$ है तथा शंकु की तिर्यक ऊँचाई $2.8 m$ है तो इस तंबू को बनाने में प्रयुक्त कैनवस $($canvas$)$ का क्षेत्रफल ज्ञात कीजिए। साथ ही, $₹500$ प्रति $m^2$ की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए। $($ध्यान दीजिए कि तंबू के आधार को कैनवस से नहीं ढका जाता है।$)$
    View Solution
  • 8
    एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई $8 \ cm$ है और इसके ऊपरी सिरे $($जो खुला हुआ है$)$ की त्रिज्या $5 \ cm$ है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक $0.5 \ cm$ त्रिज्या वाला एक गोला है, डाली जाती हैं, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।
    View Solution
  • 9
    एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ $1 \ cm$ हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन $\pi$ के पदों में ज्ञात कीजिए। $(\pi=\frac{22}{7})$
    View Solution
  • 10
    एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई $8 \ cm$ है और व्यास $2 \ cm$ है जबकि गोलाकार भाग का व्यास $8.5 \ cm$ है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन $345 \ cm^3$ है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi = 3.14।$
    View Solution