एक कलमदान घनाभ के आकार की एक लकड़ी से बना है जिसमें कलम रखने के लिए चार शंक्वाकार गड्ढे बने हुए हैं। घनाभ की विमाएँ $15 \ cm \times 10 \ cm \times 3.5 \ cm$ हैं। प्रत्येक गड्ढे की त्रिज्या $0.5 \ cm$ है और गहराई $1.4 \ cm$ है। पूरे कलमदान में लकड़ी का आयतन ज्ञात कीजिए $($देखिए आकृति$)$।
Exercise-12.2-4
Download our app for free and get started
चूंकि
घनाभ की विमाएँ $= 15$ सेमी.$ \times 10$ सेमी. $\times 3.5$ सेमी.
$\therefore$ घनाभ का आयतन $= 15$ सेमी. $\times 10$ सेमी. $\times 3.5$ सेमी.
$= 15 \times 10 \times \frac{35}{10}$ सेमी.$^3$
$= 15 \times 35$ सेमी.$^3 = 525$ सेमी.$^3$
चूंकि प्रत्येक गड्ढा शंक्वाकार है जिसकी त्रिज्या $(r) = 0.5$ सेमी. और गहराई $h = 1.4$ सेमी.
$\therefore$ प्रत्येक शंक्वाकार गड्ढे का आयतन $= \frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times\left(\frac{5}{10}\right)^{2} \times \frac{14}{10}$ सेमी.$^3$
चूंकि कलमदान में कुल चार गड्ढे हैं।
$\therefore$ गड्ढों का कुल आयतन $= 4 \times \frac{1}{3} \times \frac{22}{7} \times \frac{5}{10} \times \frac{5}{10} \times \frac{14}{10}$ सेमी.$^3$
$= \frac{4}{3} \times \frac{11}{10}$ सेमी.$^3 = \frac{44}{30}$ सेमी.$^3$
अब कलमदान में लकड़ी की मात्रा $($आयतन$) = [$घनाभ का आयतन$] - [$गड्ढों का कुल आयतन$]$
$= 525$ सेमी.$^{3 }- \frac{44}{30}$ सेमी.$^3$
$= \frac{15750-44}{30}$ सेमी.$^3$
$= \frac{15706}{30}$ सेमी.$^{3 }= 523.53$ सेमी.$^{3 }$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
लकड़ी का एक खिलौना रॉकेट $($rocket$)$ एक शंकु के आकार का है जो एक बेलन पर अध्यारोपित है, जैसाकि आकृति में दर्शाया गया है। संपूर्ण रॉकेट की ऊँचाई $26 \ cm$ है, जबकि शंक्वाकार भाग की ऊँचाई $6 \ cm$ है। शंक्वाकार के भाग के आधार का व्यास $5 \ cm$ और बेलनाकार भाग के आधार का व्यास $3 \ cm$ है। यदि शंक्वाकार भाग पर नारंगी रंग किया जाना है और बेलनाकार भाग पर पीला रंग किया जाना है, तो प्रत्येक रंग द्वारा रॉकेट का रँगे जाने वाले भाग का क्षेत्रफल ज्ञात कीजिए। $(\pi = 3.14$ लीजिए$)$
लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति में दर्शाया गया है। यदि बेलन की ऊँचाई $10 \ cm$ है और आधार की त्रिज्या $3.5 \ cm$ है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमशः $2.1 m$ और $4 m$ है तथा शंकु की तिर्यक ऊँचाई $2.8 m$ है तो इस तंबू को बनाने में प्रयुक्त कैनवस $($canvas$)$ का क्षेत्रफल ज्ञात कीजिए। साथ ही, $₹500$ प्रति $m^2$ की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए। $($ध्यान दीजिए कि तंबू के आधार को कैनवस से नहीं ढका जाता है।$)$
एक गुलाबजामुन में उसके आयतन की लगभग $30 \%$ चीनी की चाशनी होती है। $45$ गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई $5 \ cm$ और व्यास $2.8 \ cm$ है $($देखिए आकृति$)।$
एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई $8 \ cm$ है और व्यास $2 \ cm$ है जबकि गोलाकार भाग का व्यास $8.5 \ cm$ है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन $345 \ cm^3$ है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi = 3.14।$
आकृति में दर्शाया गया सजावट के लिए प्रयोग होने वाला ब्लॉक दो ठोसों से मिलकर बना है। इनमें से एक घन है और दूसरा अर्धगोला है। इस ब्लॉक $($block$)$ का आधार $5 \ cm$ कोर या किनारे $($edge$)$ वाला एक घन है और उसके ऊपर लगे हुए अर्धगोले का व्यास $4.2 \ cm$ है। इस ब्लॉक का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए।$)$
ऊँचाई $220 \ cm$ और आधार व्यास $24 \ cm$ वाले एक बेलन, जिस पर ऊँचाई $60 \ cm$ और त्रिज्या $8 \ cm$ वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तंभ बना है। इस स्तंभ का द्रव्यमान ज्ञात कीजिए, जबकि दिया है $1 \ cm^3$ लोहे का द्रव्यमान लगभग $8 g$ होता है। $(\pi = 3.14$ लीजिए।$)$
एक ठोस में, ऊँचाई $120 \ cm$ और त्रिज्या $60 \ cm$ वाला एक शंकु सम्मिलित है, जो $60 \ cm$ त्रिज्या वाले एक अर्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लंब वृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या $60 \ cm$ है और ऊँचाई $180 \ cm$ है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए। $(\pi = \frac{22}{7})$
रशीद को जन्मदिन के उपहार के रूप में एक लट्ट् मिला, जिस पर रंग नहीं किया गया था। वह इस पर अपने मोमिया रंगों $($Crayons$)$ से रंग करना चाहता है। यह लट्टू एक शंकु के आकार का है जिसके ऊपर एक अर्धगोला अध्यारोपित है $($देखिए आकृति$)।$ लट्टू की पूरी ऊँचाई $5 \ cm$ है और इसका व्यास $3.5 \ cm$ है। उसके द्वारा रंग किया जाने वाला क्षेत्रफल ज्ञात कीजिए।$ (\pi=\frac{22}{7}$ लीजिए।$)$
एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई $8 \ cm$ है और इसके ऊपरी सिरे $($जो खुला हुआ है$)$ की त्रिज्या $5 \ cm$ है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक $0.5 \ cm$ त्रिज्या वाला एक गोला है, डाली जाती हैं, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।