एक नहर के एक तट पर एक टीवी टॉवर ऊर्ध्वाधरतः खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण $60^\circ$ है। इसी तट पर इस बिंदु से $20 m$ दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण $30^\circ$ है। $($देखिए आकृति$)$। टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।
Exercise-9.1-11
Download our app for free and get started
माना $T. V.$ टावर की ऊँचाई $= AB = h$ मीटर
माना दो बिन्दु $C$ और $D$ इस प्रकार हैं कि:
$BC = x, CD = 20$
अब, समकोण $\triangle ABC,$ में हमें प्राप्त है:
$\frac{\mathrm{AB}}{\mathrm{BC}} = \tan 60^\circ$
$\Rightarrow \frac{h}{x}=\sqrt{3} ...(i)$
$\Rightarrow h = \frac{x+20}{\sqrt{3}} ...(ii)$
$(i)$ और $(ii)$ से हमें प्राप्त होता है:
$\sqrt{3} x=\frac{x+20}{\sqrt{3}}$
$\Rightarrow 3x = x + 20$
$\Rightarrow 3x - x = 20$
$\Rightarrow 2x = 20 $
$\Rightarrow x = \frac{20}{2} = 10$ मी.
अब $(i)$ से हमें प्राप्त होता है।
$h = \sqrt{3} \times 10$
$= 1.732 \times 10 = 17.32$
इस प्रकार, मीनार की ऊँचाई $= 17.82$ मी. और नहर की चौड़ाई $= 10$ मी.
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक पेडस्टल के शिखर पर एक $1.6 m$ ऊँची मूर्ति लगी है। भूमि के एक बिंदु से मूर्ति के शिखर का उन्नयन कोण $60^\circ$ है और उसी बिंदु से पेडस्टल के शिखर का उन्नयन कोण $45^\circ$ है। पेडस्टल की ऊँचाई ज्ञात कीजिए।
समुद्र$-$तल से $75 m$ ऊँची लाइट हाउस के शिखर से देखने पर दो समुद्री जहाजों के अवनमन कोण $30^\circ$ और $45^\circ$ हैं। यदि लाइट हाउस के एक ही ओर एक जहाज दूसरे जहाज के ठीक पीछे हो तो दो जहाजों के बीच की दूरी ज्ञात कीजिए।
एक मीनार के पाद$-$बिंदु से एक भवन के शिखर का उन्नयन कोण $30^\circ$ है और भवन के पाद$-$बिंदु से मीनार के शिखर का उन्नयन कोण $60^\circ$ है। यदि मीनार $50 m$ ऊँची हो, तो भवन की ऊँचाई ज्ञात कीजिए।
मीनार के आधार से और एक सरल रेखा में $4 m$ और $9 m$ की दूरी पर स्थित दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए कि मीनार की ऊँचाई $6 m$ है।
एक सीधा राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को $30^\circ$ के अवनमन कोण पर देखता है जो कि मीनार के पाद की ओर एक समान चाल से जाता है। छ: सेकेंड बाद कार का अवनमन कोण $60^\circ$ हो गया। इस बिंदु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।
$1.5 m$ लंबा एक लड़का $30 m$ ऊँचे एक भवन से कुछ दूरी पर खड़ा है। जब वह ऊँचे भवन की ओर जाता है तब उसकी आँख से भवन के शिखर का उन्नयन कोण $30^\circ$ से $60^\circ$ हो जाता है। बताइए कि वह भवन की ओर कितनी दूरी तक चलकर गया है।
$1.2 m$ लंबी एक लड़की भूमि से $88.2 m$ की ऊँचाई पर एक क्षैतिज रेखा में हवा में उड़ रहे गुब्बारे को देखती है। किसी भी क्षण लड़की की आँख से गुब्बारे का उन्नयन कोण $60^\circ$ है। कुछ समय बाद उन्नयन कोण घटकर $30^\circ$ हो जाता है $($देखिए आकृति$)।$ इस अंतराल के दौरान गुब्बारे द्वारा तय की गई दूरी ज्ञात कीजिए।
सर्कस का एक कलाकार एक $20 m$ लंबी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खंभे के शिखर से बंधा हुआ है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण $30^o $ का हो तो खंभे की ऊँचाई ज्ञात कीजिए $($देखिए आकृति$)$।
एक ठेकेदार बच्चों को खेलने के लिए एक पार्क में दो फिसलनपट्टी लगाना चाहती है। $5$ वर्ष से कम उम्र के बच्चों के लिए वह एक ऐसी फिसलनप्टी लगाना चाहती है जिसका शिखर $1.5 m$ की ऊँचाई पर हो और भूमि के साथ $30^\circ$ के कोण पर झुका हुआ हो, जबकि इससे अधिक उम्र के बच्चों के लिए वह $3 m$ की ऊँचाई पर एक अधिक ढाल की फिसलनपट्टी लगाना चाहती है, जो भूमि के साथ $60^\circ$ का कोण बनाती हो। प्रत्येक स्थिति में फिसलनपट्टी की लंबाई क्या होनी चाहिए?
भूमि से $60 m$ की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिंदु से बांध दिया गया है। भूमि के साथ डोरी का झुकाव $60^\circ$ है। यह मानकर कि डोरी में कोई ढील नहीं है, डोरी की लंबाई ज्ञात कीजिए।