समुद्र$-$तल से $75 m$ ऊँची लाइट हाउस के शिखर से देखने पर दो समुद्री जहाजों के अवनमन कोण $30^\circ$ और $45^\circ$ हैं। यदि लाइट हाउस के एक ही ओर एक जहाज दूसरे जहाज के ठीक पीछे हो तो दो जहाजों के बीच की दूरी ज्ञात कीजिए।
Exercise-9.1-13
Download our app for free and get started
आकृति में, माना $AB$ लाइट$-$हाउस है
$\therefore AB = 75$ मी.
माना $C$ और $D$ दो जहाज इस प्रकार हैं कि $B$ से उनके अवनमन कोण क्रमशः $45^\circ$ और $30^\circ$ हैं। अब, समकोण $\triangle ABC$ में, हमें प्राप्त है:
$\frac{\mathrm{AB}}{\mathrm{AC}} = \tan 45^o$
$\Rightarrow \frac{75}{\mathrm{AC}}=1 \Rightarrow AC = 75 ...(i)$
पुन: समकोण $\triangle ABD$ में, हमें प्राप्त है:
$\frac{\mathrm{AB}}{\mathrm{AD}} = \tan 30^\circ$
$\Rightarrow \frac{75}{\mathrm{AD}}=\frac{1}{\sqrt{3}} \Rightarrow AD = 75\sqrt{3} ...(ii)$
चूंकि, दोनों जहाजों के बीच की दूरी $= CD$
$= AD - AC = 75 \sqrt{3}-75$
$= 75[\sqrt{3} - 1] = 75[1.732 - 1]$
$= 75 \times 0.732 = 54.9$
इस प्रकार, दोनों जहाजों के बीच की अभीष्ठ दूरी $= 54.9$ मी.
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक नहर के एक तट पर एक टीवी टॉवर ऊर्ध्वाधरतः खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण $60^\circ$ है। इसी तट पर इस बिंदु से $20 m$ दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण $30^\circ$ है। $($देखिए आकृति$)$। टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।
एक $80 m$ चौड़ी सड़क के दोनों ओर आमने-सामने समान लंबाई वाले दो खंभे लगे हुए हैं। इन दोनों खंभों के बीच सड़क के एक बिंदु से खंभों के शिखर के उन्नयन कोण क्रमशः $60^\circ$ और $30^\circ$ है। खंभों की ऊँचाई और खंभों से बिंदु की दूरी ज्ञात कीजिए।
आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है कि पेड़ का शिखर जमीन को छूने लगता है और इसके साथ $30^\circ$ का कोण बनाता है। पेड़ के पाद$-$बिंदु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है$, 8 m$ है। पेड़ की ऊँचाई ज्ञात कीजिए।
सर्कस का एक कलाकार एक $20 m$ लंबी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खंभे के शिखर से बंधा हुआ है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण $30^o $ का हो तो खंभे की ऊँचाई ज्ञात कीजिए $($देखिए आकृति$)$।
एक मीनार के पाद$-$बिंदु से एक भवन के शिखर का उन्नयन कोण $30^\circ$ है और भवन के पाद$-$बिंदु से मीनार के शिखर का उन्नयन कोण $60^\circ$ है। यदि मीनार $50 m$ ऊँची हो, तो भवन की ऊँचाई ज्ञात कीजिए।
मीनार के आधार से और एक सरल रेखा में $4 m$ और $9 m$ की दूरी पर स्थित दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए कि मीनार की ऊँचाई $6 m$ है।
भूमि के एक बिंदु से एक $20 m$ ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमशः $45^\circ$ और $60^\circ$ है। मीनार की ऊँचाई ज्ञात कीजिए।
$1.2 m$ लंबी एक लड़की भूमि से $88.2 m$ की ऊँचाई पर एक क्षैतिज रेखा में हवा में उड़ रहे गुब्बारे को देखती है। किसी भी क्षण लड़की की आँख से गुब्बारे का उन्नयन कोण $60^\circ$ है। कुछ समय बाद उन्नयन कोण घटकर $30^\circ$ हो जाता है $($देखिए आकृति$)।$ इस अंतराल के दौरान गुब्बारे द्वारा तय की गई दूरी ज्ञात कीजिए।
भूमि से $60 m$ की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिंदु से बांध दिया गया है। भूमि के साथ डोरी का झुकाव $60^\circ$ है। यह मानकर कि डोरी में कोई ढील नहीं है, डोरी की लंबाई ज्ञात कीजिए।
एक पेडस्टल के शिखर पर एक $1.6 m$ ऊँची मूर्ति लगी है। भूमि के एक बिंदु से मूर्ति के शिखर का उन्नयन कोण $60^\circ$ है और उसी बिंदु से पेडस्टल के शिखर का उन्नयन कोण $45^\circ$ है। पेडस्टल की ऊँचाई ज्ञात कीजिए।