एक सीधा राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को $30^\circ$ के अवनमन कोण पर देखता है जो कि मीनार के पाद की ओर एक समान चाल से जाता है। छ: सेकेंड बाद कार का अवनमन कोण $60^\circ$ हो गया। इस बिंदु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।
Exercise-9.1-15
Download our app for free and get started
आकृति में,
माना $AB,$ मीनार की ऊँचाई को व्यक्त करता है। $C$ और $D$ कार की दो स्थितियों को दर्शाते हैं।
समकोण $\triangle \text{ABD}$ में, हमें प्राप्त है:
$\frac{AB}{AD} = \tan 60^\circ$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\sqrt{3}$
$\Rightarrow AB = \sqrt{3} \cdot \mathrm{AD} ...(i)$
समकोण $\triangle \text{ABC}$ में, हमें प्राप्त है:
$\frac{\mathrm{AB}}{\mathrm{AC}} = \tan 30^\circ$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1}{\sqrt{3}} \Rightarrow \mathrm{AB}=\frac{\mathrm{AC}}{\sqrt{3}} ...(ii)$
$(i)$ और $(ii)$ से
$\sqrt{3} \mathrm{AD}=\frac{\mathrm{AC}}{\sqrt{3}}$
$\Rightarrow AC = \sqrt{3} \times \sqrt{3} \times \mathrm{AD} = 3 AD$
अब $CD = AC - AD = 3AD - AD = 2AD$
$\therefore$ दूरी $2 AD$ को तय करने में लगा समय $= 6$ सेकंड
$\therefore$ दूरी $AD$ को तय करने में लगा समय $= \frac{6}{2}$ सेकंड $= 3$ सेकंड
अतः कार को D$ से$ मीनार तक पहुँचने में लगा अभीष्ठ समय $= 3$ सेकंड
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
मीनार के आधार से और एक सरल रेखा में $4 m$ और $9 m$ की दूरी पर स्थित दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए कि मीनार की ऊँचाई $6 m$ है।
एक नहर के एक तट पर एक टीवी टॉवर ऊर्ध्वाधरतः खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण $60^\circ$ है। इसी तट पर इस बिंदु से $20 m$ दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण $30^\circ$ है। $($देखिए आकृति$)$। टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।
भूमि से $60 m$ की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिंदु से बांध दिया गया है। भूमि के साथ डोरी का झुकाव $60^\circ$ है। यह मानकर कि डोरी में कोई ढील नहीं है, डोरी की लंबाई ज्ञात कीजिए।
$1.2 m$ लंबी एक लड़की भूमि से $88.2 m$ की ऊँचाई पर एक क्षैतिज रेखा में हवा में उड़ रहे गुब्बारे को देखती है। किसी भी क्षण लड़की की आँख से गुब्बारे का उन्नयन कोण $60^\circ$ है। कुछ समय बाद उन्नयन कोण घटकर $30^\circ$ हो जाता है $($देखिए आकृति$)।$ इस अंतराल के दौरान गुब्बारे द्वारा तय की गई दूरी ज्ञात कीजिए।
एक $80 m$ चौड़ी सड़क के दोनों ओर आमने-सामने समान लंबाई वाले दो खंभे लगे हुए हैं। इन दोनों खंभों के बीच सड़क के एक बिंदु से खंभों के शिखर के उन्नयन कोण क्रमशः $60^\circ$ और $30^\circ$ है। खंभों की ऊँचाई और खंभों से बिंदु की दूरी ज्ञात कीजिए।
एक मीनार के पाद$-$बिंदु से एक भवन के शिखर का उन्नयन कोण $30^\circ$ है और भवन के पाद$-$बिंदु से मीनार के शिखर का उन्नयन कोण $60^\circ$ है। यदि मीनार $50 m$ ऊँची हो, तो भवन की ऊँचाई ज्ञात कीजिए।
एक ठेकेदार बच्चों को खेलने के लिए एक पार्क में दो फिसलनपट्टी लगाना चाहती है। $5$ वर्ष से कम उम्र के बच्चों के लिए वह एक ऐसी फिसलनप्टी लगाना चाहती है जिसका शिखर $1.5 m$ की ऊँचाई पर हो और भूमि के साथ $30^\circ$ के कोण पर झुका हुआ हो, जबकि इससे अधिक उम्र के बच्चों के लिए वह $3 m$ की ऊँचाई पर एक अधिक ढाल की फिसलनपट्टी लगाना चाहती है, जो भूमि के साथ $60^\circ$ का कोण बनाती हो। प्रत्येक स्थिति में फिसलनपट्टी की लंबाई क्या होनी चाहिए?
$1.5 m$ लंबा एक लड़का $30 m$ ऊँचे एक भवन से कुछ दूरी पर खड़ा है। जब वह ऊँचे भवन की ओर जाता है तब उसकी आँख से भवन के शिखर का उन्नयन कोण $30^\circ$ से $60^\circ$ हो जाता है। बताइए कि वह भवन की ओर कितनी दूरी तक चलकर गया है।