एक निर्माता ₹$\left(5-\frac{x}{100}\right)$ प्रति इकाई की दर से x इकाइयाँ बेच सकता है। x इकाइयों का उत्पाद मूल्य ₹$ \left(\frac{x}{5}+500\right)$ है। इकाइयों की वह संख्या ज्ञात कीजिए जो उसे अधिकतम लाभ अर्जित करने के लिए बेचनी चाहिए।
EXAMPLE-51
Download our app for free and get startedPlay store
मान लीजिए x इकाइयों का विक्रय मूल्य S(x) है और x इकाइयों का उत्पाद मूल्य C(x) है। तब हम पाते हैं
S(x) = $ \left(5-\frac{x}{100}\right) $ x = 5 x - $ \frac{x^{2}}{100}$
और C(x) = $ \frac{x}{5}$ + 500
इस प्रकार, लाभ फलन P(x) निम्नांकित द्वारा प्रदत्त है।
p(x) = S(x) - C(x) = 5x - $\frac{x^{2}}{100}$ - $\frac{x}{5}$ - 500
अर्थात् P(x) = $\frac{24}{5}$ x - $\frac{x^{2}}{100}$ - 500 
या P$^{\prime}$(x) = $\frac{24}{5}-\frac{x}{50}$
अब P$^{\prime}$(x) = 0 से x = 240 प्राप्त होता है और P$^{\prime}$(x) = $\frac{-1}{50}$. इसलिए P$^{\prime \prime}$(240) = $ \frac{-1}{50}$ < 0  है।
इस प्रकार x = 240 उच्चतम का बिंदु है। अतः निर्माता अधिकतम लाभ अर्जित कर सकता है यदि वह 240 इकाइयाँ बेचता है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि न्यूनतम पृष्ठ का दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की $\sqrt{2}$ गुनी होती है।
    View Solution
  • 2
    $45$ सेमी $\times\ 24$ सेमी की टिन की आयताकार चादर के कोनों पर वर्ग काटकर तथा इस प्रकार बनें टिन के फलकों को मोड़कर ढ़क्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम हो।
    View Solution
  • 3
    सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्ध शीर्ष कोण $\tan ^{-1}\sqrt{2}$ होता है।
    View Solution
  • 4
    $f(x) = \cos^2 x + \sin x, x \in [0, \pi]$ द्वारा प्रदत्त फलन $f$ का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
    View Solution
  • 5
    सिद्ध कीजिए कि एक $r$ त्रिज्या के गोले के अंतर्गत उच्चतम आयतन के लंबवृत्तीय शंकु की ऊँचाई $\frac{4 r}{3}$ है।
    View Solution
  • 6
    सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्तम आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण $\sin^{-1} \left(\frac{1}{3}\right)$ होता है।
    View Solution
  • 7
    ऐल्यूमिनियम की $3m \times 8 m$ की आयताकार चादर के प्रत्येक कोने से समान वर्ग काटने पर बने एल्यूमिनियम के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। इस प्रकार बने संदूक का अधिकतम आयतन ज्ञात कीजिए।
    View Solution
  • 8
    मान लीजिए $[a, b]$ पर परिभाषित एक फलन $f$ है इस प्रकार कि सभी $x \in (a, b)$ के लिए $f^{\prime}(x) > 0$ है तो सिद्ध कीजिए कि $(a, b)$ पर $f$ एक वर्धमान फलन है।
    View Solution
  • 9
    शत्रु का एक अपाचे हेलिकॉप्टर वक्र $y = x^2+ 7$ के अनुदिश प्रदत्त पथ पर उड़ रहा है। बिंदु $(3, 7)$ पर स्थित एक सैनिक अपनी स्थिति से न्यूनतम दूरी पर उस हेलिकॉप्टर को गोली मारना चाहता है। न्यूनतम दूरी ज्ञात कीजिए।
    View Solution
  • 10
    आयताकार आधार व आयताकार दीवारों की $2 m$ गहरी और $8 m^3$ आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए $Rs. 70/m^2$ और दीवारों पर $Rs. 45 /m^2$ व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?
    View Solution