एक प्रकार के केक को 200 ग्राम आटा तथा 25 ग्राम वसा (fat) की आवश्यकता होती है तथा दूसरी प्रकार के केक के लिए 100 ग्राम आटा तथा 50 ग्राम वसा की आवश्यकता होती है। केकों की अधिकतम संख्या बताओ जो 5 किलो आटे तथा 1 किलो वसा से बन सकते हैं, यह मान लिया गया है कि केकों को बनाने के लिए अन्य पदार्थों की कमी नहीं रहेगी।
Exercise-12.2-2
Download our app for free and get startedPlay store
मान लीजिए एक प्रकार के केकों की संख्या x है, जबकि दूसरे प्रकार के केकों की संख्या y है।

प्रकार केकों की संख्या आवश्यक आटा
(ग्राम में)
आवश्यक वसा
(ग्राम में)
I x 200x 25x
II y 100y 50y
कुल  x + y 200x + 100y 25x + 50y
आवश्यकता    5000 1000

हमको उद्देश्य फलन Z = x + y ...(i)
का अधिकतम मान निम्न व्यवरोधों के अंतर्गत ज्ञात करना है।
200x + 100y $\leq$ 5000 $\Leftrightarrow$ 2x + y $\leq$ 50 ...(ii)
25x + 50y $\leq$ 1000
$\Leftrightarrow$ x + 2y $\leq$ 40 ...(iii)
तथा x, y $\geq$ 0 ...(iv)
सर्वप्रथम, रेखा 2x + y = 50 का ग्राफ खींचते हैं।

x 0 25
y 50 0

(0, 0) असमिका 2x + y $\leq$ 50 में रखने पर, 2 $\times$ 0 + 0 $\leq$ 50 $\Rightarrow$ 0 $\leq$ 50 (जोकि सत्य है)
अतः अर्द्धतल मूलबिंदु की ओर है।
अब, रेखा x + 2y = 40 का ग्राफ खींचते हैं।

x 0 40
y 20 0


(0, 0) असमिका x + 2y $\leq$ 40 में रखने पर,
0 + 2 $\times$ 0 $\leq$ 40 $\Rightarrow$ 0 $\leq$ 40 (जोकि सत्य है)
अतः अर्द्धतल मूलबिंदु की ओर है। चूँकि x, y $\geq$ 0
अतः सुसंगत क्षेत्र प्रथम चतुर्थांश में होगा।
समीकरण 2x + y = 50
तथा x + 2y = 40 को हल करने पर प्रतिच्छेद बिंदु B(20, 10) प्राप्त होता है।
$\therefore$ सुसंगत क्षेत्र OABCO है।
इस प्रकार, सुसंगत क्षेत्र के शीर्ष बिंदु O(0, 0), A(25, 0), B(20, 10) तथा C(0, 20) हैं। इन शीर्ष बिंदुओं पर Z का मान निम्न है।

शीर्ष बिंदु Z = x + y
O(0, 0) 0
A(25, 0) 25
B(20, 10) 30 $\rightarrow$ अधिकतम
C(0, 20) 20

 कुल केकों की संख्या 30 है, जहाँ 20 एक प्रकार के तथा 10 दूसरे प्रकार के केक हैं।

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    एक निर्माता दो प्रकार के खिलौने A और B बनाता है। इस उद्देश्य के लिए निर्माण में तीन मशीनों की आवश्यकता पड़ती है और प्रत्येक प्रकार के खिलौने के निर्माण के लिए लगा समय (मिनटों में) निम्नलिखित है।

    खिलौने के प्रकार मशीन
    I II III
    A 12 18 6
    B 6 0 9

    प्रत्येक मशीन अधिकतम 6 घंटे प्रतिदिन के लिए उपलब्ध है। यदि A प्रकार के खिलौने की बिक्री पर ₹7.50 लाभ और B प्रकार के खिलौने पर ₹5 का लाभ हो तो दर्शाइए कि अधिकतम लाभ कमाने के लिए प्रतिदिन A प्रकार के 15 खिलौने और B प्रकार 30 खिलौने निर्मित होने चाहिए।

    View Solution
  • 2
    दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
    निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए:
    x + 2y $\geq$ 100, 2x - y $\leq$ 0, 2x + y $\leq$ 200; x, y $\geq$ 0
    View Solution
  • 3
    (आहार संबंधी समस्या): एक आहार विज्ञानी दो प्रकार के भोज्यों को इस प्रकार मिलाना चाहता है कि मिश्रण में विटामिन A का घटक कम से कम 8 मात्रक और विटामिन C का घटक कम से कम 10 मात्रक हो। भोज्य I में 2 मात्रक विटामिन A प्रति kg और 1 मात्रक विटामिन C प्रति kg है। जबकि भोज्य II में 1 मात्रक विटामिन A प्रति kg और 2 मात्रक विटामिन C प्रति kg है। दिया है कि प्रति kg भोज्य I को खरीदने में ₹50 और प्रति kg भोज्य II को खरीदने में ₹70 लगते हैं। इस प्रकार के भोज्य मिश्रण का न्यूनतम मूल्य ज्ञात कीजिए।
    View Solution
  • 4
    दो प्रकार के उर्वरक $F_1$ और $F_2$ है। $F_1$ में $10\%$ नाइट्रोजन और $6\%$ फास्फोरिक अम्ल है। तथा $F_2$ में $5\%$ नाइट्रोजन तथा $10\%$ फास्फोरिक अम्ल है। मिट्टी की स्थितिओं का परीक्षण करने के पश्चात् एक किसान पाता है कि उसे अपनी फसल के लिए $14 \ kg$ नाइट्रोजन और $14 \ kg$ फास्फोरिक अम्ल की आवश्यकता है। यदि $F_1$ की कीमत $₹\ 6/ kg$ और $F_2$ की कीमत $₹\ 5/ kg$ है, प्रत्येक प्रकार का कितना उर्वरक उपयोग के लिए चाहिए ताकि न्यूनतम मूल्य पर वांछित पोषक तत्व मिल सके। न्यूनतम लागत क्या है।
    View Solution
  • 5
    उत्पादन संबंधी समस्या (Manufacturing Problem) एक निर्माणकर्ता कंपनी एक उत्पाद के दो नमूने (प्रतिमान) A और B बनाती है। नमूना A के प्रत्येक नग बनाने के लिए 9 श्रम घंटे और 1 घंटा पॉलिश करने के लिए लगता है जबकि नमूना B के प्रत्येक नग के बनाने में 12 श्रम घंटे तथा पॉलिश करने में 3 श्रम घटों की आवश्यकता होती है। बनाने तथा पॉलिश करने के लिए उपलब्ध अधिकतम श्रम घंटे क्रमशः 180 तथा 30 हैं। कंपनी नमूना A के प्रत्येक नग पर ₹ 8000 तथा नमूना B के प्रत्येक नग पर ₹12000 का लाभ कमाती है। नमूना A और नमूना B के कितने नगों का अधिकतम लाभ कमाने के लिए प्रति सप्ताह निर्माण करना चाहिए? प्रति सप्ताह अधिकतम लाभ क्या है?
    View Solution
  • 6
    आलेखीय विधि द्वारा उद्देश्य फलन Z = -50x + 20y का न्यूनतम मान निम्नलिखित व्यवरोधों के अंतर्गत ज्ञात कीजिए:
    2x - y $\geq$ -5 ...(i)
    3x + y $\geq$ 3 ...(ii)
    2x - 3y $\leq$ 12 ...(iii)
    x $\geq$ 0, y $\geq$ 0 ...(iv)
    View Solution
  • 7
    एक फल उत्पादक अपने बाग में दो प्रकार के खादों P ब्रांड और Q ब्रांड का उपयोग कर सकता है। मिश्रण के प्रत्येक थैले में नाइट्रोजन, फास्फोरिक अम्ल, पोटाश और क्लोरीन की मात्रा (kg में) सारणी में दिया गया है। परीक्षण संकेत देते है कि बाग को कम से कम 250 kg फास्फोरिक अम्ल, कम से कम 270 kg पोटाश और क्लोरीन की अधिक से अधिक 310 kg की आवश्यकता है।
    यदि उत्पादक बाग के लिए मिलाई जाने वाली नाइट्रोजन की मात्रा का न्यूनतमीकरण करना चाहता है तथा, प्रत्येक मिश्रण के कितने थैलों का उपयोग होना चाहिए? मिलाई जाने वाली नाइट्रोजन की निम्नतम मात्रा क्या है?
    kg प्रति थैला
      ब्राँड P ब्राँड Q
    नाइट्रोजन 3 3.5
    फास्फोरिक अम्ल 1 2
    पोटाश 3 1.5
    क्लोरीन 1.5 2
    View Solution
  • 8
    ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्या को हल कीजिए:
    निम्न अवरोधों के अंतर्गत Z = 3x + 5y का न्यूनतमीकरण कीजिए:
    x + 3y $\geq$ 3, x + y $\geq$ 2, x, y $\geq$ 0
    View Solution
  • 9
    (आहार समस्या) एक आहारविद् दो भोज्यों P और Q का उपयोग करते हुए एक विशेष आहार तैयार करता है। भोज्य P का प्रत्येक पैकेट (जिसमें 30 ग्राम अंतर्विष्ट है) में कैल्शियम के 12 मात्रक लौह तत्व के 4 मात्रक, कोलेस्ट्रोल के 6 मात्रक और विटामिन A के 6 मात्रक अंतर्विष्ट हैं जबकि उसी मात्र के भोज्य Q के पैकेट में कैल्शियम तत्व के 3 मात्रक, लौह तत्व के 20 मात्रक, कोलेस्ट्रोल के 4 मात्रक और विटामिन A के 3 मात्रक अंतर्विष्ट है। आहार में कम से कम 240 मात्रक कैल्शियम, लौह तत्व के कम से कम 460 मात्रक, और कोलेस्ट्रोल के अधिक से अधिक 300 मात्रक अपेक्षित हैं। प्रत्येक भोज्य के कितने पैकेटों का उपयोग किया जाए ताकि आहार में विटामिन A की मात्रा का न्यूनतम किया जा सके।
    View Solution
  • 10
    ग्राफ़ीय विधि से रैखिक प्रोग्रामन समस्या को हल कीजिए:
    निम्न अवरोधों के अंतर्गत Z = 3x + 2y का न्यूनतमीकरण कीजिए:
    x + 2y $\leq$ 10, 3x + y $\leq$ 15, x, y $\geq$ 0
    View Solution