ऊँचाई $2.4 \ cm$ और व्यास $1.4 \ cm$ वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल $($cavity$)$ काट लिया जाता है। शेष बचे ठोस का निकटतम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi = \frac{22}{7})$
Exercise-12.1-8
Download our app for free and get startedPlay store

बेलनाकार भाग के लिए: ऊँचाई $(h) = 2.4$ सेमी.
व्यास $(d) = 1.4$ सेमी.
$\Rightarrow$ त्रिज्या $(r) = \frac{1.4}{2} =$ सेमी. $= 0.7$ सेमी.
$\therefore$ बेलनाकार भाग का संपूर्ण पृष्ठीय क्षेत्रफल $= 2 \pi r h+2 \pi r^{2}=2 \pi r[h+r]$
$= 2 \times \frac{22}{7} \times \frac{7}{10}[2.4+0.7]$ सेमी.$^2$
$= \frac{44}{10} \times 3.1$ सेमी.$^2 = \frac{44 \times 31}{100}=\frac{1364}{100}$ सेमी.$^2$
शंक्वाकार भाग के लिए:
त्रिज्या $(r) = 0.7$ सेमी.
ऊँचाई $(h) = 2.4$ सेमी.
तिर्यक ऊँचाई $(l) = \sqrt{r^{2}+h^{2}}$
$=\sqrt{(0.7)^{2}+(2.4)^{2}}$
$=\sqrt{0.49+5.76}$
$=\sqrt{6.25}$
$= 2.5$ सेमी.
शंक्वाकार भाग का वक्र पृष्ठीय क्षेत्रफल $= \pi r l=\frac{22}{7} \times 0.7 \times 2.5$ सेमी.$^2$
$= \frac{22 \times 25}{100}$ सेमी.$^2 = \frac{550}{100}$ सेमी.$^2$
शंक्वाकार भाग के आधार का क्षेत्रफल $= \pi r^{2}=\frac{22}{7} \times\left(\frac{7}{10}\right)^{2}$ सेमी.$^2 = \frac{22 \times 7}{100}$ सेमी.$^2 = \frac{154}{100}$ सेमी.$^2$
$\therefore$ शेष बचे ठोस का क्षेत्रफल $= [($बेलनाकार भाग का कुल क्षेत्रफल$) + ($शंक्वाकार भाग का पृष्ठीय क्षेत्रफल$] -$ शंक्वाकार भाग के आधार का क्षेत्रफल$)$
$= [(\frac{1364}{100}$ सेमी.$^2) + (\frac{550}{100}$ सेमी.$^2)] - \frac{154}{100}$ सेमी.$^2$
$= \frac{1914}{100}$ सेमी.$^2 - \frac{154}{100}$सेमी.$^2$
$= \frac{1760}{100}$ सेमी.$^{2 }$
$= 17.6$ सेमी.$^2$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    एक इंजीनियरिंग के विद्यार्थी रचेल से एक पतली एल्यूमीनियम की शीट का प्रयोग करते हुए एक मॉडल बनाने को कहा गया जो एक ऐसे बेलन के आकार का हो जिसके दोनों सिरों पर दो शंकु जुड़े हुए हों। इस मॉडल का व्यास $3 \ cm$ है और इसकी लंबाई $12 \ cm$ है। यदि प्रत्येक शंकु की ऊँचाई $2\ cm$ हो तो रचेल द्वारा बनाए गए मॉडल में अंतर्विष्ट हवा का आयतन ज्ञात कीजिए। $($यह मान लीजिए कि मॉडल की आंतरिक और बाहरी विमाएँ लगभग बराबर हैं$।)$
    View Solution
  • 2
    एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ $1 \ cm$ हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन $\pi$ के पदों में ज्ञात कीजिए। $(\pi=\frac{22}{7})$
    View Solution
  • 3
    दवा का एक कैप्सूल $($capsule$)$ एक बेलन के आकार का है जिसके दोनों सिरों पर एक$-$एक अर्धगोला लगा हुआ है $($देखिए आकृति$)।$ पूरे कैप्सूल की लंबाई $14\ mm$ है और उसका व्यास $5 \ mm$ है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 4
    लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति में दर्शाया गया है। यदि बेलन की ऊँचाई $10 \ cm$ है और आधार की त्रिज्या $3.5 \ cm$ है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
    View Solution
  • 5
    रशीद को जन्मदिन के उपहार के रूप में एक लट्ट् मिला, जिस पर रंग नहीं किया गया था। वह इस पर अपने मोमिया रंगों $($Crayons$)$ से रंग करना चाहता है। यह लट्टू एक शंकु के आकार का है जिसके ऊपर एक अर्धगोला अध्यारोपित है $($देखिए आकृति$)।$ लट्टू की पूरी ऊँचाई $5 \ cm$ है और इसका व्यास $3.5 \ cm$ है। उसके द्वारा रंग किया जाने वाला क्षेत्रफल ज्ञात कीजिए।$ (\pi=\frac{22}{7}$ लीजिए।$)$
    View Solution
  • 6
    आकृति में दर्शाया गया सजावट के लिए प्रयोग होने वाला ब्लॉक दो ठोसों से मिलकर बना है। इनमें से एक घन है और दूसरा अर्धगोला है। इस ब्लॉक $($block$)$ का आधार $5 \ cm$ कोर या किनारे $($edge$)$ वाला एक घन है और उसके ऊपर लगे हुए अर्धगोले का व्यास $4.2 \ cm$ है। इस ब्लॉक का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=\frac{22}{7}$ लीजिए।$)$​​​​​​​
    View Solution
  • 7
    एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई $8 \ cm$ है और व्यास $2 \ cm$ है जबकि गोलाकार भाग का व्यास $8.5 \ cm$ है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन $345 \ cm^3$ है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi = 3.14।$
    View Solution
  • 8
    ऊँचाई $220 \ cm$ और आधार व्यास $24 \ cm$ वाले एक बेलन, जिस पर ऊँचाई $60 \ cm$ और त्रिज्या $8 \ cm$ वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तंभ बना है। इस स्तंभ का द्रव्यमान ज्ञात कीजिए, जबकि दिया है $1 \ cm^3$ लोहे का द्रव्यमान लगभग $8 g$ होता है। $(\pi = 3.14$ लीजिए।$)$
    View Solution
  • 9
    एक ठोस में, ऊँचाई $120 \ cm$ और त्रिज्या $60 \ cm$ वाला एक शंकु सम्मिलित है, जो $60 \ cm$ त्रिज्या वाले एक अर्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लंब वृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या $60 \ cm$ है और ऊँचाई $180 \ cm$ है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए। $(\pi = \frac{22}{7})$
    View Solution
  • 10
    एक गुलाबजामुन में उसके आयतन की लगभग $30 \%$ चीनी की चाशनी होती है। $45$ गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई $5 \ cm$ और व्यास $2.8 \ cm$ है $($देखिए आकृति$)।$
    View Solution