जाँच कीजिए कि क्या R में $ \mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
Exercise-1.1-5
Download our app for free and get startedPlay store
A = R = वास्तविक संख्याओं का समुच्चय तथा $R=\left\{(a, b): a \leq b^{3}\right\}$
स्वतुल्य संबंध के लिए, हम जानते हैं कि $\frac{1}{2} \nless\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
$\Rightarrow \left(\frac{1}{2}, \frac{1}{2}\right) \notin R, $ अतः R, स्वतुल्य संबंध नहीं है।
सममित संबंध के लिए, चूँकि $1<2^{3} \therefore(1,2) \in R$ लेकिन $2 \nless 1^{3} \therefore(2,1) \notin R$ अतः R सममित संबंध नहीं है।
संक्रमक संबंध के लिए, चूँकि $3<\left(\frac{3}{2}\right)^{3}=\frac{27}{8} \therefore\left(3, \frac{3}{2}\right) \in R $ तथा $\frac{3}{2}<\left(\frac{6}{5}\right)^{3}=\frac{216}{125}$
$\therefore$ $\left(\frac{3}{2}, \frac{6}{5}\right) \in R$ लेकिन $ 3>\left(\frac{6}{5}\right)^{3}$
$\therefore\left(3, \frac{6}{5}\right) \notin R$ अतः R, संक्रमक संबंध नहीं है। इसलिए R, स्वतुल्य संबंध, सममित संबंध तथा संक्रमक संबंध में से कोई नहीं है।
 
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध किजिए कि समुच्चय $\mathrm{A}=\{x \in \mathbf{Z}: 0 \leq x \leq 12\}$, में दिए गए निम्नलिखित संबंधों R में से प्रत्येक एक तुल्यता संबंध है:

    1. R = {(a, b) : |a - b|, 4 का एक गुणज है},
    2. R = {(a, b) : a = b},

    प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।

    View Solution
  • 2
    यदि $f : R \rightarrow  R$ जहाँ $f(x) = x^2- 3x + 2$ द्वारा परिभाषित, है, तो $f(f(x))$ ज्ञात कीजिए।
    View Solution
  • 3
    सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय $A$ में, $\mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.$ के समरूप है द्वारा परिभाषित संबंध $R$ एक तुल्यता संबंध है। भुजाओं $3, 4, 5$ वाले समकोण त्रिभुज $T_1,$ भुजाओं $5, 12, 13$ वाले समकोण त्रिभुज $T_2$ तथा भुजाओं $6, 8, 10$ वाले समकोण त्रिभुज $T_3$ पर विचार कीजिए। $\mathrm{T}_{1}, \mathrm{~T}_{2}$ और $T_{3 }$ में से कौन से त्रिभुज परस्पर संबंधित हैं?
    View Solution
  • 4
    सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1, 2), (2, 1)} द्वारा प्रदत्त संबंध R सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।
    View Solution
  • 5
    सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A $में, $\mathrm{R}=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right): \mathrm{P}_{1}\right.$तथा $P_2$ की भुजाओं की संख्या समान है} प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।
    View Solution
  • 6
    सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में, R = {(P, Q): बिंदु P की मूल बिंदु से दूरी, बिंदु Q की मूल बिंदु से दूरी के समान है द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। पुनः सिद्ध कीजिए कि बिंदु P $\neq(0,0)$ से संबंधित सभी बिंदुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूलबिंदु पर है।
    View Solution
  • 7
    एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए:
    P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि A $\subset$ B है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।
    View Solution
  • 8
    सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।
    View Solution
  • 9
    सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R = {(a, b) : |a - b| सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय {2, 4} के सभी अवयव एक दूसरे से संबंधित हैं परंतु {1, 3, 5} का कोई भी अवयव {2, 4} के किसी अवयव से संबंधित नहीं है।
    View Solution
  • 10
    मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution