सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय $A$ में, $\mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.$ के समरूप है द्वारा परिभाषित संबंध $R$ एक तुल्यता संबंध है। भुजाओं $3, 4, 5$ वाले समकोण त्रिभुज $T_1,$ भुजाओं $5, 12, 13$ वाले समकोण त्रिभुज $T_2$ तथा भुजाओं $6, 8, 10$ वाले समकोण त्रिभुज $T_3$ पर विचार कीजिए। $\mathrm{T}_{1}, \mathrm{~T}_{2}$ और $T_{3 }$ में से कौन से त्रिभुज परस्पर संबंधित हैं?
Exercise-1.1-12
Download our app for free and get startedPlay store
दिया है, $A =$ समस्त त्रिभुजों का समुच्चय, $R = (T_1, T_2): T_1,T_{2 }$ के समरूप है
चूँकि प्रत्येक त्रिभुज स्वयं के समरूप होता है। अतः $R$ स्वतुल्य संबंध है। पुनः मान लीजिए $(T_1, T_2) \in R$
$\Rightarrow T_1, T_2$ समरूप त्रिभुज हैं।
$\Rightarrow T_2, T_1$ समरूप त्रिभुज हैं।
$\Rightarrow (T_2, T_1) \in R, \forall T_1, T_2 \in A$
$\Rightarrow R$, एक सममित संबंध है। पुनः मान लीजिए $(T_1, T_2), (T_2, T_3) \in R$
$\Rightarrow T_1, T_2$ समरूप त्रिभुज हैं तथा $T_2, T_3$ समरूप त्रिभुज हैं।
$\Rightarrow T_2, T_3$ समरूप त्रिभुज हैं।
$\Rightarrow (T_1, T_3) \in R, \forall T_1, T_3 \in A$
$\Rightarrow R,$ एक संक्रमक संबंध है।
इसलिए $R$ एक तुल्यता संबंध है। अब, चूँकि$ \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \left(\frac{1}{2}\right)$
अतः त्रिभुजों $T_1$ तथा $T_{3 }$ की संगत भुजाएँ समान अनुपात में हैं। अतः त्रिभुज $T_1,$ त्रिभुज $T_3$ के समरूप है।
अतः त्रिभुज $T_1,$ त्रिभुज $T_3$ से संबंधित है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि R में $\mathrm{R}=\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
    View Solution
  • 2
    सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y): x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
    View Solution
  • 3
    यदि $f : R \rightarrow  R$ जहाँ $f(x) = x^2- 3x + 2$ द्वारा परिभाषित, है, तो $f(f(x))$ ज्ञात कीजिए।
    View Solution
  • 4
    a * b = |a - b| तथा a o b = a, $\forall$ a, b $\in$ R द्वारा परिभाषित द्विआधारी संक्रियाओं *: R $\times$ R $ \rightarrow $ R तथा o : R $\times$ R $\rightarrow $ R पर विचार कीजिए। सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है। पुनः सिद्ध कीजिए कि सभी a, b, c $\in $ R के लिए a * (b o c) = (a * b) o (a * c) है। [यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित (Distributes) होती है।] क्या o संक्रिया * पर वितरित होती है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 5
    सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में, R = {(P, Q): बिंदु P की मूल बिंदु से दूरी, बिंदु Q की मूल बिंदु से दूरी के समान है द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। पुनः सिद्ध कीजिए कि बिंदु P $\neq(0,0)$ से संबंधित सभी बिंदुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूलबिंदु पर है।
    View Solution
  • 6
    निम्नलिखित प्रकार से समुच्चय $\{0, 1, 2, 3, 4, 5\}$ में एक द्विआधारी संक्रिया $^*$ परिभाषित कीजिए

    सिद्ध कीजिए कि शून्य $(0)$ इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव $a \neq0$ व्युत्क्रमणीय है, इस प्रकार कि $6 - a, a$ का प्रतिलोम है।
    View Solution
  • 7
    मान लीजिए कि $A = {-1, 0, 1, 2}, B = {- 4, -2, 0, 2}$ और $f, g : A \rightarrow B,$ क्रमशः $f(x) = x^2- x, x \in A$ तथा $g(x) = 2\left|x-\frac{1}{2}\right|-1, x \in A$ द्वारा परिभाषित फलन हैं। क्या $f$ तथा $g$ समान हैं? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 8
    मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 9
    सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R = {(a, b) : |a - b| सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय {2, 4} के सभी अवयव एक दूसरे से संबंधित हैं परंतु {1, 3, 5} का कोई भी अवयव {2, 4} के किसी अवयव से संबंधित नहीं है।
    View Solution
  • 10
    जाँच कीजिए कि क्या R में $ \mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
    View Solution