सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A $में, $\mathrm{R}=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right): \mathrm{P}_{1}\right.$तथा $P_2$ की भुजाओं की संख्या समान है} प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।
Exercise-1.1-13
Download our app for free and get started
दिया है,$ A =$ समस्त बहुभुजों का समुच्चय
तथा $R = {(P_1, P_2); P_1}$ तथा $P_2$ की भजाओं की संख्या समान हैं}
स्पष्ट है कि $(P, P) \in R, \forall P\in A$ क्योंकि प्रत्येक बहुभुज $P$ में भुजाओं की संख्या, बहुभुज $P$ की भुजाओं की संख्या के बराबर है। अतः $R,$ स्वतुल्य संबंध है।
अब, मान लीजिए $(P_1, P_2) \in R \Rightarrow$ बहुभुज $P_1$ तथा $P_2$ में भुजाओं की संख्या समान हैं।
$\Rightarrow$ बहुभुज $P_2$ तथा $P_1$ में भुजाओं की संख्या समान हैं।
$\Rightarrow (P_2, P_1) \in R$
$\Rightarrow R,$ एक सममित संबंध है। पुनः मान लीजिए $(P_1, P_2), (P_2, P_3) \in R$
$\Rightarrow$ बहुभुज $P_1$ तथा $P_2$ में भुजाओं की संख्या समान हैं। $P_2$ तथा $P_3$ में भुजाओं की संख्या समान हैं।
$\Rightarrow P_1$ तथा $P_3$ में भुजाओं की संख्या समान हैं।
$\Rightarrow (P_1, P_3) \in R$
$\Rightarrow R,$ एक संक्रमक संबंध है। अतः $R,$ एक तुल्यता संबंध है।
अब, भुजाओं $3, 4$ तथा $5$ वाले समकोण त्रिभुज से वह बहुभुज संबंधित होगा। जिसमें भुजाओं की संख्या तीन होगी। अतः भुजाओं $3, 4$ तथा $5$ वाले समकोण त्रिभुज से संबंधित बहुभुज, त्रिभुज है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय $A$ में, $\mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.$ के समरूप है द्वारा परिभाषित संबंध $R$ एक तुल्यता संबंध है। भुजाओं $3, 4, 5$ वाले समकोण त्रिभुज $T_1,$ भुजाओं $5, 12, 13$ वाले समकोण त्रिभुज $T_2$ तथा भुजाओं $6, 8, 10$ वाले समकोण त्रिभुज $T_3$ पर विचार कीजिए। $\mathrm{T}_{1}, \mathrm{~T}_{2}$ और $T_{3 }$ में से कौन से त्रिभुज परस्पर संबंधित हैं?
निम्नलिखित प्रकार से समुच्चय $\{0, 1, 2, 3, 4, 5\}$ में एक द्विआधारी संक्रिया $^*$ परिभाषित कीजिए
सिद्ध कीजिए कि शून्य $(0)$ इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव $a \neq0$ व्युत्क्रमणीय है, इस प्रकार कि $6 - a, a$ का प्रतिलोम है।
किसी प्रदत्त अरिक्त समुच्चय $X$ के लिए मान लीजिए कि $*: P(X) \times P(X) \rightarrow P(X), $जहाँ $A * B = (A - B) \cup (B - A), \forall A, B \in P(X)$ द्वारा परिभाषित है। सिद्ध कीजिए कि रिक्त समुच्चय $\phi,$ संक्रिया $*$ का तत्समक है तथा $P(X)$ के समस्त अवयव $A$ व्युत्क्रमणीय है, इस प्रकार कि $A^{-1} = A..$
मान लीजिए कि $XY-$तल में स्थित समस्त रेखाओं का समुच्चय $L$ है और $L$ में $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right.: \mathrm{L}_{1}$ समान्तर है $L_2$ के द्वारा परिभाषित संबंध R है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है। रेखा $y = 2x + 4$ से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।
मान लीजिए कि समस्त $n \in \mathbf{N} $ के लिए द्वारा परिभाषित एक फलन f: $\mathbf{N} \rightarrow \mathbf{N}$ है। बतलाइए कि क्या फलन f एकैकी आच्छादी (bijective) है। अपने उत्तर का औचित्य भी बतलाइए।
एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए: P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि A $\subset$ B है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।
मान लीजिए कि $A = {-1, 0, 1, 2}, B = {- 4, -2, 0, 2}$ और $f, g : A \rightarrow B,$ क्रमशः $f(x) = x^2- x, x \in A$ तथा $g(x) = 2\left|x-\frac{1}{2}\right|-1, x \in A$ द्वारा परिभाषित फलन हैं। क्या $f$ तथा $g$ समान हैं? अपने उत्तर का औचित्य भी बतलाइए।
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y): x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
a * b = |a - b| तथा a o b = a, $\forall$ a, b $\in$ R द्वारा परिभाषित द्विआधारी संक्रियाओं *: R $\times$ R $ \rightarrow $ R तथा o : R $\times$ R $\rightarrow $ R पर विचार कीजिए। सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है। पुनः सिद्ध कीजिए कि सभी a, b, c $\in $ R के लिए a * (b o c) = (a * b) o (a * c) है। [यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित (Distributes) होती है।] क्या o संक्रिया * पर वितरित होती है? अपने उत्तर का औचित्य भी बतलाइए।