सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1, 2), (2, 1)} द्वारा प्रदत्त संबंध R सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।
Exercise-1.1-6
Download our app for free and get startedPlay store
A = {1, 2, 3}
तथा $R=\{(1,2),(2,1)\}$
चूँकि $(1,1),(2,2),(3,3) \notin R, \therefore R$, स्वतुल्य संबंध नहीं है। अब, चूँकि (1, 2) $\in R$ तथा (2, 1) $\in R$
$\therefore R$ सममित संबंध है। पुनः $(1,2) \in R$ तथा (2, 1)$ \in R$ लेकिन (1, 1) $\notin R$ अतः R, संक्रमक संबंध नहीं है। इसलिए R, सममित संबंध है लेकिन R, स्वतुल्य संबंध तथा संक्रमक संबंध नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    जाँच कीजिए कि क्या R में $ \mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
    View Solution
  • 2
    सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।
    View Solution
  • 3
    मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 4
    सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R = {(a, b) : |a - b| सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय {2, 4} के सभी अवयव एक दूसरे से संबंधित हैं परंतु {1, 3, 5} का कोई भी अवयव {2, 4} के किसी अवयव से संबंधित नहीं है।
    View Solution
  • 5
    एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए:
    P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि A $\subset$ B है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।
    View Solution
  • 6
    सिद्ध कीजिए कि R में $\mathrm{R}=\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
    View Solution
  • 7
    सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A $में, $\mathrm{R}=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right): \mathrm{P}_{1}\right.$तथा $P_2$ की भुजाओं की संख्या समान है} प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।
    View Solution
  • 8
    a * b = |a - b| तथा a o b = a, $\forall$ a, b $\in$ R द्वारा परिभाषित द्विआधारी संक्रियाओं *: R $\times$ R $ \rightarrow $ R तथा o : R $\times$ R $\rightarrow $ R पर विचार कीजिए। सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है। पुनः सिद्ध कीजिए कि सभी a, b, c $\in $ R के लिए a * (b o c) = (a * b) o (a * c) है। [यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित (Distributes) होती है।] क्या o संक्रिया * पर वितरित होती है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 9
    यदि $f : R \rightarrow  R$ जहाँ $f(x) = x^2- 3x + 2$ द्वारा परिभाषित, है, तो $f(f(x))$ ज्ञात कीजिए।
    View Solution
  • 10
    निम्नलिखित प्रकार से समुच्चय $\{0, 1, 2, 3, 4, 5\}$ में एक द्विआधारी संक्रिया $^*$ परिभाषित कीजिए

    सिद्ध कीजिए कि शून्य $(0)$ इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव $a \neq0$ व्युत्क्रमणीय है, इस प्रकार कि $6 - a, a$ का प्रतिलोम है।
    View Solution