सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।
Exercise-1.1-2
Download our app for free and get startedPlay store
दिया है, A = R = वास्तविक संख्याओं का समुच्चय
तथा $R=\left\{(a, b): a \leq b^{2}\right\}$
स्वतुल्य संबंध के लिए, हम जानते हैं कि $\frac{1}{2} \leq\left(\frac{1}{2}\right)^{2} $सत्य नहीं है।
$\Rightarrow\left(\frac{1}{2}, \frac{1}{2}\right) \notin R $ अतः R, स्वतुल्य संबंध नहीं है।
सममित संबंध के लिए, हम जानते हैं कि $-1 \leq 3^{2} \Rightarrow(-1,3) \in R$ लेकिन 3$\not\leq$$(-1)^{2} \Rightarrow(3,-1) \notin R $ अतः Rसममित संबंध नहीं है।
संक्रमक संबंध के लिए, हम जानते हैं कि $2 \nless(-3)^{2} \therefore(2,-3) \in R$ तथा $(-3) \leq(1)^{2}$
$\therefore(-3,1) \in R$ लेकिन $2 \not \leq 1^{2} \therefore(2,1) \notin R$ अतः R एक संक्रमक संबंध नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    जाँच कीजिए कि क्या R में $ \mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
    View Solution
  • 2
    मान लीजिए कि समस्त $n \in \mathbf{N} $ के लिए 
    द्वारा परिभाषित एक फलन f: $\mathbf{N} \rightarrow \mathbf{N}$ है। बतलाइए कि क्या फलन f एकैकी आच्छादी (bijective) है। अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 3
    मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 4
    एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए:
    P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि A $\subset$ B है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।
    View Solution
  • 5
    सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R = {(a, b) : |a - b| सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय {2, 4} के सभी अवयव एक दूसरे से संबंधित हैं परंतु {1, 3, 5} का कोई भी अवयव {2, 4} के किसी अवयव से संबंधित नहीं है।
    View Solution
  • 6
    सिद्ध किजिए कि समुच्चय $\mathrm{A}=\{x \in \mathbf{Z}: 0 \leq x \leq 12\}$, में दिए गए निम्नलिखित संबंधों R में से प्रत्येक एक तुल्यता संबंध है:

    1. R = {(a, b) : |a - b|, 4 का एक गुणज है},
    2. R = {(a, b) : a = b},

    प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।

    View Solution
  • 7
    जाँच कीजिए कि क्या समुच्चय {1, 2, 3, 4, 5, 6} में $\mathrm{R}=\{(a, b): b=a+1\}$ द्वारा परिभाषित संबंध R स्वतुल्य, सममित या संक्रामक है।
    View Solution
  • 8
    सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y): x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
    View Solution
  • 9
    सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1, 2), (2, 1)} द्वारा प्रदत्त संबंध R सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।
    View Solution
  • 10
    निम्नलिखित प्रकार से समुच्चय $\{0, 1, 2, 3, 4, 5\}$ में एक द्विआधारी संक्रिया $^*$ परिभाषित कीजिए

    सिद्ध कीजिए कि शून्य $(0)$ इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव $a \neq0$ व्युत्क्रमणीय है, इस प्रकार कि $6 - a, a$ का प्रतिलोम है।
    View Solution