मान लें कि एक एच.आई.वी. परीक्षण की विश्वसनीयता निम्नलिखित प्रकार से निर्दिष्ट की गई है। एच.आई.वी. पोजीटिव व्यक्तियों के लिए परीक्षण 90% पता लगाने में और 10% पता न लगाने में सक्षम है। एच.आई.वी. से स्वतंत्र व्यक्तियों के लिए परीक्षण, 99% सही पता लगाता है यानी एच. आई.वी नेगेटिव बताता है जबकि 1% परीक्षित व्यक्तियों के लिए एच.आई.वी. पोजीटिव बताता है। एक बड़ी जनसंख्या, जिसमें 0.1% व्यक्ति एच.आई.वी. ग्रस्त है, में से एक व्यक्ति यादृच्छया चुना जाता है और उस का परीक्षण किया जाने पर रोगविज्ञानी एच.आई.वी. की उपस्थिति बताता है। क्या प्रायिकता है कि वह व्यक्ति वास्तव में एच.आई.वी. (पोजीटिव) है?
example-18
Download our app for free and get started
मान लें E चुने गए व्यक्ति के वास्तव में एच.आई.वी. पोजीटिव होने की घटना और A व्यक्ति के एच.आई.वी. परीक्षण में पोजीटिव होने की घटना को दर्शाते हैं। हमें P$(\mathrm{E} \mid \mathrm{A})$ ज्ञात करना है। साथ ही E' चुने गए व्यक्ति के एच.आई.वी. पोजीटिव न होने की घटना को दर्शाता है। स्पष्टतया $ \left\{\mathrm{E}, \mathrm{E}^{\prime}\right\}$ जनसंख्या में सभी व्यक्तियों के प्रतिदर्श समष्टि का एक विभाजन है। हमें ज्ञात है P(E) = 0.1% = $\frac{0.1}{100}$ = 0.001 P(E') = 1 - P(E) = 0.999 $\mathrm{P}(\mathrm{A} \mid \mathrm{E})$ = P (व्यक्ति का परीक्षण में एच.आई.वी. पोजीटिव दर्शाना जबकि दिया गया है कि वह वास्तव में एच.आई.वी. पोजीटिव है) = 90% = $ \frac{9}{10} $ = 0.9 और $ \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}^{\prime}\right)$ = P (व्यक्ति का परीक्षण में एच.आई.वी. पोजीटिव दर्शाना जब कि दिया गया है कि वह वास्तव में एच.आई.वी. पोजीटिव नहीं है) = 1% = 0.01 अब बेज़-प्रमेय द्वारा $\mathrm{P}(\mathrm{E} \mid \mathrm{A})$ = $ \frac{\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{A} \mid \mathrm{E})}{\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{A} \mid \mathrm{E})+\mathrm{P}\left(\mathrm{E}^{\prime}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}^{\prime}\right)}$ = $ \frac{0.001 \times 0.9}{0.001 \times 0.9+0.999 \times 0.01}$ = $\frac{90}{1089}$ = 0.083 (लगभग) अतः एक यादृच्छया चुने गए व्यक्ति के वास्तव में एच.आई.वी. पोजीटिव होने की प्रायिकता जब कि ज्ञात है कि उसका एच.आई.वी. परीक्षण पोजीटवि है, 0.083 है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
मान लीजिए हमारे पास $\text{A, B, C}$ और $D$ बक्से हैं जिसमें रखी संगमरमर की लाल सफेद और काली टुकड़ियों का विवरण निम्न तरीक से है यादृच्छया एक बॉक्स चुना जाता है तथा इससे एक टुकड़ा निकाला जाता है। यदि टुकड़ा लाल हो, तो इसे बॉक्स $A;$ बॉक्स $B,$ बॉक्स $C$ से निकाले जाने की क्या प्रायिकता है?
एक व्यक्ति के बारे में ज्ञात है कि वह $4$ में से $3$ बार सत्य बोलता है। वह एक पासे को उछालता है और बतलाता है कि उस पर आने वाली संख्या $6$ है। इस की प्रायिकता ज्ञात कीजिए कि पासे पर आने वाली संख्या वास्तव में $6$ है।
दो दल एक निगम के निर्देशक मंडल में स्थान पाने की प्रतिस्पर्धा में हैं। पहले तथा दूसरे दल के जीतने की प्रायिकताएँ क्रमशः $0.6$ तथा $0.4$ हैं। इसके अतिरिक्त यदि पहला दल जीतता है तो एक नए उत्पाद के प्रारम्भ होने की प्रायिकता $0.7$ है और यदि दूसरा दल जीतता है, तो इस बात की संगत प्रायिकता $0.3$ है। इसकी प्रायिकता ज्ञात कीजिए कि नया उत्पादन दूसरे दल द्वारा प्रारम्भ किया गया था।
एक कलश में 10 काली और 5 सफ़ेद गेंदे हैं। दो गेंद एक के बाद एक निकाली जाती हैं और पहली गेंद दूसरे के निकालने से पहले वापस नहीं रखी जाती हैं। मान लीजिए कि कलश में से प्रत्येक गेंद का निकालना समसंभाव्य है, तो दोनों काले गेंद निकलने की क्या प्रायिकता है?
मान लें कि जन्म लेने वाले बच्चे का लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है। यदि यह दिया गया है कि
ताश के 52 पत्तों की एक भली-भाँति फेंटी गई गड्डी में से दो पत्ते उत्तरोत्तर बिना प्रतिस्थापना के (या एक साथ) निकाले जाते हैं। बादशाहों की संख्या का माध्य, प्रसरण व मानक-विचलन ज्ञात कीजिए।
एक सिक्के को उछालने के परीक्षण पर विचार कीजिए। यदि सिक्के पर चित प्रकट हो तो सिक्के को पुनः उछालें परंतु यदि सिक्के पर पट प्रकट हो तो एक पासे को फेंकें। यदि घटना कम से कम एक पट प्रकट होना का घटित होना दिया गया है तो घटना पासे पर 4 से बड़ी संख्या प्रकट होना की सप्रतिबंध प्रायिकता ज्ञात कीजिए।