मान लें कि जन्म लेने वाले बच्चे का लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है। यदि यह दिया गया है कि
  1. सबसे छोटा बच्चा लड़की है
  2. न्यूनतम एक बच्चा लड़की है।
Exercise-13.1-12
Download our app for free and get startedPlay store
मान लीजिए b लड़के तथा g लडकी को निरूपित करता है और यदि परिवार में दो बच्चें हैं, तो इस घटना का प्रतिदर्श समष्टि
S = {bb, bg, gb, gg}
जिसके चार सेमसंभमव्य परिणाम है, अतः n(S) = 4
मान लीजिए घटना E, 'दोनों बच्चों के लड़की होने' को निरूपित करता है, तब
E = {gg} $\Rightarrow$ n(E) = 1
  1. मान लीजिए घटना F, 'सबसे छोटा बच्चा लड़की है' को निरूपित करता है, तब F= {bg, gg} $\Rightarrow$ n(F) = 2
    $\Rightarrow$ E$ \cap$ F = {gg} $\Rightarrow$ n(E $\cap$ F) = 1
    अतः P(E) = $\frac{1}{4}, P(F)$ = $\frac{2}{4}$ $=\frac{1}{2} $ तथा P(E $\cap$ F) = $\frac{1}{4}$
    $\therefore$ अभीष्ट प्रायिकता = $ P\left(\frac{E}{F}\right)$ = $\frac{P(E \cap F)}{P(F)}$ = $\frac{1 / 4}{2 / 4}$$=\frac{1}{2}$
  2. मान लीजिए घटना F' न्यूनतम एक लड़की होने' को निरूपित करता है, तब
    F = {bg, gb, gg} $\Rightarrow$ E $\cap$ F = {gg} = E
    $\Rightarrow$ n(F) = 3, n(E $ \cap$ F) = 1
    $\therefore$अभीष्ट प्रायिकता = P$\left(\frac{E}{F}\right)$ = $\frac{P(E \cap F)}{P(F)}$ = $\frac{P(E)}{P(F)}$$=\frac{1 / 4}{3 / 4}$$=\frac{1}{3}$
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ताश के 52 पत्तों की एक भली-भाँति फेंटी गई गड्डी में से दो पत्ते उत्तरोत्तर बिना प्रतिस्थापना के (या एक साथ) निकाले जाते हैं। बादशाहों की संख्या का माध्य, प्रसरण व मानक-विचलन ज्ञात कीजिए।
    View Solution
  • 2
    मान लीजिए कि कोई लड़की एक पासा उछालती है। यदि उसे $5$ या $6$ की संख्या प्राप्त होती है तो वह एक सिक्के को तीन बार उछालती है और चितो की संख्या नोट करती है। यदि उसे $1, 2, 3$ या $4$ की संख्या प्राप्त होती है, तो वह एक सिक्के को एक बार उछालती है और यह नोट करती है कि उस पर 'चित' या पट प्राप्त हुआ। यदि उसे ठीक एक चित प्राप्त होता है, तो उसके द्वारा उछाले गए पासे पर $1, 2, 3$ या $4$ प्राप्त होने की प्रायिकता क्या है?
    View Solution
  • 3
    मान लीजिए किसी रोगी को दिल का दौरा पड़ने का संयोग $40\%$ है। यह मान लिया जाता है कि ध्यान और योग विधि दिल का दौरा पड़ने के खतरे को $30\%$ कम कर देता है और दवा द्वारा खतरे को $25\%$ कम किया जा सकता है। किसी भी समय रोगी इन दोनों में से किसी एक विकल्प का चयन करता है। यह दिया गया है कि उपरोक्त विकल्पों से किसी एक का चुनाव करने वाले रोगियों से यादृच्छया चुना गया रोगी दिल के दौरे से ग्रसित हो जाता है। रोगी द्वारा ध्यान और योग विधि का उपयोग किए जाने की प्रायिकता ज्ञात कीजिए।
    View Solution
  • 4
    किसी व्यक्ति ने एक निर्माण कार्य का ठेका लिया है। हड़ताल होने की प्रायिकता 0.65 है। हड़ताल न होने की तथा हड़ताल होने की स्थितियों में निर्माण कार्य के समयानुसार पूर्ण होने की प्रायिकताएँ क्रमश: 0.80 तथा 0.32 हैं। निर्माण कार्य के समयानुसार पूर्ण होने की प्रायिकता ज्ञात कीजिए।
    View Solution
  • 5
    एक कक्षा में $15$ छात्र हैं जिनकी आयु $14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19$ और $20$ वर्ष हैं। एक छात्र को इस प्रकार चुना गया कि प्रत्येक छात्र को चुने जाने की संभावना समान है और चुने गए छात्र की आयु $(X)$ को लिखा गया। यादुच्छिक चर $X$ का प्रायिकता बंटन ज्ञात कीजिए। $X$ का माध्य, प्रसरण व मानक विचलन भी ज्ञात कीजिए।
    View Solution
  • 6
    एक पासे को दो बार उछाला गया और प्रकट हुई संख्याओं का योग 6 पाया गया। संख्या 4 के न्यूनतम एक बार प्रकट होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए।
    View Solution
  • 7
    द्विपद बंटन $B \left(4, \frac{1}{3}\right)$ का माध्य ज्ञात कीजिए।
    View Solution
  • 8
    एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3} और G = {2, 3, 4, 5} के लिए निम्नलिखित को ज्ञात कीजिए।
    1. P$\left(\frac{E}{F}\right)$ तथा $P\left(\frac{F}{E}\right)$
    2. P$\left(\frac{E}{G}\right)$ तथा P$\left(\frac{G}{E}\right)$
    3. P$\left(\frac{E \cup F}{G}\right)$तथा P$\left(\frac{E \cap F}{G}\right)$
    View Solution
  • 9
    एक सिक्के को उछालने के परीक्षण पर विचार कीजिए। यदि सिक्के पर चित प्रकट हो तो सिक्के को पुनः उछालें परंतु यदि सिक्के पर पट प्रकट हो तो एक पासे को फेंकें। यदि घटना कम से कम एक पट प्रकट होना का घटित होना दिया गया है तो घटना पासे पर 4 से बड़ी संख्या प्रकट होना की सप्रतिबंध प्रायिकता ज्ञात कीजिए।
    View Solution
  • 10
    एक बोल्ट बनाने के कारखाने में मशीनें $($यंत्र$) A, B$ और $C$ कुल उत्पादन का क्रमशः $25\%, 35 \%$ और $40\%$ बोल्ट बनाती हैं। इन मशीनों के उत्पादन का क्रमशः $5, 4,$ और $2$ प्रतिशत भाग खराब $($त्रुटिपूर्ण$)$ हैं। बोल्टों के कुल उत्पादन में से एक बोल्ट यादृच्छया निकाला जाता है और वह खराब पाया जाता है। इसकी क्या प्रायिकता है कि यह बोल्ट मशीन $B$ द्वारा बनाया गया है?
    View Solution