मान लें किसी यादृच्छिक चुने गए विद्यालयी दिवस में पढ़ाई के घंटों को X से दर्शाया जाता है। X के मान x लेने की प्रायिकता निम्नलिखित तरह से है, जहाँ k एक वास्तविक संख्या है: $\mathrm{P}(\mathrm{X}=x)$=
k का मान ज्ञात कीजिए
इस बात की क्या प्रायिकता है कि आप न्यूनतम दो घंटे पढ़ते है? अधिकतम दो घंटे पढ़ते है?
example-26
Download our app for free and get started
X का प्रायिकता बंटन निचे दिया गया है:
X
0
1
2
3
4
P(X)
0.1
k
2k
2k
k
हमें ज्ञात है कि $\sum \limits_{i=1} ^n p_{i}$ = 1 इसलिए 0.1 + k + 2k + 2k + k = 1 $\Rightarrow$ k = 0.15
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
चार डिब्बों में रगींन गेंदें निम्न सारणी में दर्शाए गए तरह से आंबटित की गई है:
डिब्बा
रंग
काला
सफ़ेद
लाल
नीला
$I$
$3$
$4$
$5$
$6$
$II$
$2$
$2$
$2$
$2$
$III$
$1$
$2$
$3$
$1$
$IV$
$4$
$3$
$1$
$5$
एक डिब्बे को यादृच्छया चुना गया और फिर उसमें से एक गेंद निकाली गई। यदि गेंद का रंग काला है तो इसकी क्या प्रायिकता है कि गेंद को डिब्बा $- III$ से निकाला गया है?
यदि A और B स्वतंत्र घटनाएँ हैं तो A या B में से न्यूनतम एक के होने की प्रायिकता = 1$-\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
यह ज्ञात है कि एक महाविद्यालय के छात्रों में से $60\%$ छात्रावास में रहते हैं और $40\%$ छात्रावास में नहीं रहते हैं। पूर्ववर्ती वर्ष के परिणाम सूचित करते हैं कि छात्रावास में रहने वाले छात्रों में से $30\%$ और छात्रावास में न रहने वाले छात्रों में से $20\%$ छात्रों ने $A$ ग्रेड लिया। वर्ष के अन्त में महाविद्यालय के एक छात्र को यादृच्छया चुना गया और यह पाया गया है क उसे $A-$ग्रेड मिला है। इस बात कि क्या प्रायिकता है कि वह छात्र छात्रावास में रहने वाला है?
एक थैले में $4$ लाल और $4$ काली गेंदें हैं और एक अन्य थैले में $2$ लाल और $6$ काली गेंदे हैं। दोनों थैलों में से एक को यादृच्छया चुना जाता है और उसमें एक गेंद निकाली जाती है जोकि लाल है। इस बात की क्या प्रायिकता है कि गेंद पहले थैले से निकाली गई है$?$
एक बहु-विकल्पीय परीक्षा में 5 प्रश्न हैं जिनमें प्रत्येक के तीन संभावित उत्तर हैं। इसकी क्या प्रायिकता है कि एक विद्यार्थी केवल अनुमान लगा कर चार या अधिक प्रश्नों के सही उत्तर दे देगा?
कल्पना कीजिए कि $5\%$ पुरुषों और $0.25\%$ महिलाओं के बाल सफेद हैं। एक सफेद बालों वाले व्यक्ति को यादृच्छिक चुना गया है। इस व्यक्ति के पुरुष होने की प्रायिकता क्या है? यह मान लें कि पुरुषों और महिलाओं की संख्या समान है।
एक सत्य$-$असत्य प्रकार के $20$ प्रश्नों वाली परीक्षा में मान लें कि एक विद्यार्थी एक न्याय्य सिक्के को उछाल कर प्रत्येक प्रश्न का उत्तर निर्धारित करता है। यदि पासे पर चित प्रकट हो, तो वह प्रश्न का उत्तर सत्य देता है और यदि पट प्रकट हो, तो असत्य लिखता है। इसकी प्रायिकता ज्ञात कीजिए कि वह कम$-$से$-$कम दो प्रश्नों का सही उत्तर देता है।