सिद्ध कीजिए कि नीचे परिभाषित फलन $f : N \rightarrow N$, एकैकी तथा आच्छादक दोनों ही है
example-12
Download our app for free and get startedPlay store
मान लीजिए $f\left(x_{1}\right)=f\left(x_{2}\right)$ है।
नोट कीजिए कि यदि $x_1$ विषम है तथा $x_2$ सम है, तो $x_{1}+1 =x_{2}-1$, अर्थात् $x_{2}-x_{1}=2$ जो असम्भव है। इस प्रकार $x_1$ के सम तथा $x_2$ के विषम होने की भी संभावना नहीं है।
इसलिए $x_1$ तथा $x_2$ दोनों ही या तो विषम होंगे या सम होंगे। मान लीजिए कि $x_1$ तथा $x_2$ दोनों विषम हैं, तो $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}+1=x_{2}+1$
$\Rightarrow x_{1}=x_{2}.$ इसी प्रकार यदि $x_1$ तथा $x_{2 }$ दोनों सम हैं, तो भी $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}-1=x_{2}-1$
$\Rightarrow x_{1}=x_{2}.$
अतः $f$ एकैकी है। साथ ही सहप्रांत $N$ की कोई भी विषम संख्या $2r + 1$, प्रांत $N$ की संख्या $2r + 2$ का प्रतिबिंब है और सहप्रांत $N$ की कोई भी सम संख्या $2r, N$ की संख्या $2r - 1$ का प्रतिबिंब है। अतः $f$ आच्छादक है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    निर्धारित कीजिए कि नीचे दिए गए प्रकार से परिभाषित संक्रिया $*$ से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब $*$ एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
    $Z^{+ }$ में, संक्रिया $ *, a * b=|a-b|$ द्वारा परिभाषित
    View Solution
  • 2
    सिद्ध कीजिए कि यदि $f: \mathrm{A} \rightarrow \mathrm{B}$ तथा $g: \mathrm{B} \rightarrow \mathrm{C}$ आच्छादक हैं, तो $g o f: \mathrm{A} \rightarrow \mathrm{C}$ भी आच्छादक है।
    View Solution
  • 3
    सिद्ध कीजिए कि एक एकैकी फलन f : {1, 2, 3} $\rightarrow$ {1, 2, 3} अनिवार्य रूप से आच्छादक भी है।
    View Solution
  • 4
    यदि gof आच्छदक है, तो क्या f तथा g दोनों अनिवार्यतः आच्छादक हैं?
    View Solution
  • 5
    सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} द्वारा प्रदत्त संबंध स्वतुल्य है, परंतु न तो सममित है और न संक्रामक है।
    View Solution
  • 6
    मान लीजिए कि $ \mathrm{S}=\{1,2,3\}$ है। निर्धारित कीजिए कि क्या नीचे परिभाषित फलन f : $ \mathrm{S} \rightarrow \mathrm{S}$ के प्रतिलोम फलन हैं। $f^{-1}$, ज्ञात कीजिए यदि इसका अस्तित्व है।
    1. $f=\{(1,1),(2,2),(3,3)\}$
    2. $f=\{(1,2),(2,1),(3,1)\}$
    3. $f=\{(1,3),(3,2),(2,1)\}$
    View Solution
  • 7
    यदि $R_1$ तथा $R_2$ समुच्चय $A $में तुल्यता संबंध हैं, तो सिद्ध कीजिए कि$ R_1 \cap R_2$ भी एक तुल्यता संबंध है।
    View Solution
  • 8
    $f : {1, 2, 3} \rightarrow {a, b, c}$ तथा $g : {a, b, c} \rightarrow$ {सेब, गेंद, बिल्ली} $f(1) = a, f(2) = b, f(3) = c, g(a) =$ सेब, $g(b) =$ गेंद तथा $g(c) =$ बिल्ली द्वारा परिभाषित फलनों पर विचार कीजिए। सिद्ध कीजिए कि $f, g $और $g\ of$ व्युत्क्रमणीय हैं। f$^{-1}, g^{-1}$ तथा $(gof)^{-1}$ ज्ञात कीजिए तथा प्रमाणित कीजिए कि $(g\ of)^{-1}=f^{-1} o g^{-1}$ है।
    View Solution
  • 9
    $a *\  b = ab^2$ दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
    View Solution
  • 10
    सिद्ध कीजिए कि {1, 2} में ऐसी द्विआधारी संक्रियाओं की संख्या केवल एक है, जिसका तत्समक 1 हैं तथा जिसके अंतर्गत 2 का प्रतिलोम 2 है।
    View Solution