सिद्ध कीजिए कि $f(x) = x^2$ द्वारा परिभाषित फलन $f: {R} \rightarrow {R},$ न तो एकैकी है और न आच्छादक है।
example-11
Download our app for free and get startedPlay store
क्योंकि $f(-1) = 1 = f(1),$ इसलिए $f$ एकैकी नहीं है। पुनः सहप्रांत $R$ का अवयव $-2,$ प्रांत $R$ के किसी भी अवयव $x$ का प्रतिबिंब नहीं है। अतः $f $आच्छादक नहीं है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    सिद्ध कीजिए कि {1, 2} में ऐसी द्विआधारी संक्रियाओं की संख्या केवल एक है, जिसका तत्समक 1 हैं तथा जिसके अंतर्गत 2 का प्रतिलोम 2 है।
    View Solution
  • 2
    मान लीजिए कि P किसी प्रदत्त समुच्चय X के समस्त उप समुच्चयों का, समुच्चय है। सिद्ध कीजिए कि $\cup: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P},(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cup \mathrm{B}$ द्वारा प्रदत्त तथा $\cap: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P}(\mathrm{A}, \mathrm{B}) \rightarrow \mathrm{A} \cap \mathrm{B}$ द्वारा परिभाषित फलन, P में द्विआधारी संक्रियाएँ हैं।
    View Solution
  • 3
    निर्धारित कीजिए कि समुच्चय R में प्रदत्त निम्नलिखित द्विआधारी संक्रियाओं में से कौन सी साहचर्य हैं और कौन सी क्रमविनिमेय हैं।
    1. a $* $ b = 1, $\forall$ a, b $\in$ R
    2. a $* $ b = $\frac{(a+b)}{2}$ $\forall$ a, b $\in$ R
    View Solution
  • 4
    सिद्ध कीजिए कि R में योग, अंतर और गुणा द्विआधारी संक्रियाएँ हैं, किंतु भाग R में द्विआधारी संक्रिया नहीं है। साथ ही सिद्ध कीजिए कि भाग ऋणेतर वास्तविक संख्याओं के समुच्चय R में द्विआधारी संक्रिया है।
    View Solution
  • 5
    सिद्ध कीजिए कि यदि f: $ \mathrm{A} \rightarrow \mathrm{B}$ तथा $g: \mathrm{B} \rightarrow \mathrm{C}$ एकैकी हैं, तो $g o f: \mathrm{A} \rightarrow \mathrm{C}$ भी एकैकी है।
    View Solution
  • 6
    यदि gof आच्छदक है, तो क्या f तथा g दोनों अनिवार्यतः आच्छादक हैं?
    View Solution
  • 7
    मान लीजिए कि $T$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $T$ में $ \mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.\}$ के सर्वागंसम है एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
    View Solution
  • 8

    सिद्ध कीजिए कि f(x) = 2x द्वारा प्रदत्त फलन f : $ \mathbf{N} \rightarrow \mathbf{N}$, एकैकी है किंतु आच्छादक नहीं है।

    View Solution
  • 9
    मान लीजिए कि $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ है। मान लीजिए कि $X$ में $R_1 = (x, y) : x - y$ संख्या $3$ से भाज्य है द्वारा प्रदत्त एक संबंध $R_1$ है तथा $R_2 = (x, y) : \{x, y\} \subset \{1, 4, 7\}$ या $\{x, y\} \subset \{2, 5, 8\}$ या $\{(x, y\} \subset \{3, 6, 9\}$ द्वारा प्रदत्त $X$ में एक अन्य संबंध $R_2$ है। सिद्ध कीजिए कि $R_1 = R_2$ है।
    View Solution
  • 10
    मान लीजिए कि L किसी समतल में स्थित समस्त रेखाओं का एक समुच्चय है तथा $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right): \mathrm{L}_{1}, \mathrm{~L}_{2}\right.$ पर लंब है$\}$ समुच्चय $L$ में परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ सममित है किंत यह न तो स्वतल्य है और न संक्रामक है।
    View Solution