सिद्ध कीजिए कि एक शंकु के अंतर्गत महत्तम वक्रपृष्ठ वाले लंब वृत्तीय बेलन की त्रिज्या शंकु की त्रिज्या की आधी होती है।
EXAMPLE-38
Download our app for free and get startedPlay store

मान लीजिए शंकु के आधार की त्रिज्या $OC = r$ और ऊँचाई $OA = h$ है।
मान लीजिए कि दिए हुए शंकु के अंतर्गत बेलन के आधार के वृत्त की त्रिज्या $OE = x$ है ।
बेलन की ऊँचाई $QE$ के लिए:
$\frac{\mathrm{QE}}{\mathrm{OA}} = \frac{\mathrm{EC}}{\mathrm{OC}} ($क्योंकि $\Delta QEC \sim \Delta AOC)$
या $\frac{\mathrm{QE}}{h} = \frac{r-x}{r}$
या $QE = \frac{h(r-x)}{r}$
मान लीजिए बेलन का वक्रपृष्ठ $S$ है। तब
$S \equiv S(x) = \frac{2 \pi x h(r-x)}{r} = \frac{2 \pi h}{r} (rx - x^2)$
या $\left\{ S^{\prime}(x)=\frac{2 \pi h}{r}(r-2 x) S^{\prime \prime}(x)=\frac{-4 \pi h}{r} \right.$
अब $S^{\prime}(x) = 0$ से $x = \frac{T}{2}$ प्राप्त होता है।
क्योंकि सभी $x$ के लिए $S^{\prime \prime}(x) < 0$ है।
अतः $S\ ^{\prime \prime} \left(\frac{r}{2}\right) < 0$ है।
इसलिए $x = \frac{r}{2}, S$ का उच्चतम बिंदु है।
अतः दिए शंकु के अंतर्गत महत्तम वक्र पृष्ठ के बेलन की त्रिज्या शंकु की त्रिज्या की आधी होती है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए $[a, b]$ पर परिभाषित एक फलन $f$ है इस प्रकार कि सभी $x \in (a, b)$ के लिए $f^{\prime}(x) > 0$ है तो सिद्ध कीजिए कि $(a, b)$ पर $f$ एक वर्धमान फलन है।
    View Solution
  • 2
    सिद्ध कीजिए कि एक $R$ त्रिज्या के गोले के अंतर्गत अधिकतम आयतन के बेलन की ऊँचाई $\frac{2 \mathrm{R}}{\sqrt{3}}$ है। अधिकतम आयतन भी ज्ञात कीजिए।
    View Solution
  • 3
    शत्रु का एक अपाचे हेलिकॉप्टर वक्र $y = x^2+ 7$ के अनुदिश प्रदत्त पथ पर उड़ रहा है। बिंदु $(3, 7)$ पर स्थित एक सैनिक अपनी स्थिति से न्यूनतम दूरी पर उस हेलिकॉप्टर को गोली मारना चाहता है। न्यूनतम दूरी ज्ञात कीजिए।
    View Solution
  • 4
    $f(x) = \cos^2 x + \sin x, x \in [0, \pi]$ द्वारा प्रदत्त फलन $f$ का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
    View Solution
  • 5
    सिद्ध कीजिए कि $R$ त्रिज्या के गोले के अंतर्गत विशालतम शंकु का आयतन, गोले के आयतन का $\frac{8}{27}$ होता है।
    View Solution
  • 6
    त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिंदु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबाई $ \left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{1}{2}}$ है।
    View Solution
  • 7
    दीर्घवृत्त $\frac{x^{2}}{a^{2}}$ + $ \frac{y^{2}}{b^{2}}$ = 1 के अंतर्गत उस समद्विबाहु त्रिभुज का महत्तम क्षेत्रफल ज्ञात कीजिए जिसका शीर्ष दीर्घ अक्ष का एक सिरा है।
    View Solution
  • 8
    अंतराल ज्ञात कीजिए जिनमें $f(x) = 2x^{2 }- 3x$ से प्रदत्त फलन $f$
    1. वर्धमान
    2. ह्रासमान
    View Solution
  • 9
    $100 \ cm^3$ आयतन वाले डिब्बे सभी बंद बेलनाकार $($लंब वृत्तीय$)$ डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात किजिए।
    View Solution
  • 10
    किसी निश्चित आधार $b$ के एक समद्विबाहु त्रिभुज की समान भुजाएँ $3 \ cm/s$ की दर से घट रहीं है। उस समय जब त्रिभुज की समान भुजाएँ आधार के बराबर हैं, उसका क्षेत्रफल कितनी तेजी से घट रहा है।
    View Solution