सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y): x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
Exercise-1.1-7
Download our app for free and get startedPlay store
दिया  है, A = किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों का समुच्चय तथा R = {(x, y): x तथा Y में पेजों की संख्या समान है}
यहाँ, (x, x) $\in R, \forall x \in A$ क्योंकि पुस्तक x में पेजों की संख्या पुस्तक x के ही पेजों की संख्या के बराबर होगी। $\therefore R$, स्वतुल्य संबंध है। अब, मान लीजिए (x, y)$ \in R \Rightarrow$ पुस्तक x तथा y में पेजों की संख्या समान है। $\Rightarrow$ पुस्तक y तथा x में पेजों की संख्या समान होगी। $ \Rightarrow$ (y, x) $\in R \therefore R$ एक सममित संबंध है।
पुनः मान लीजिए $(x, y) \in R$
$\Rightarrow$ पुस्तक x तथा पुस्तक y में पेजों की संख्या समान है तथा (y, z) $\in R $
$\Rightarrow $ पुस्तक y तथा पुस्तक  z में पेजों की संख्या समान है। अतः पुस्तक x तथा z में पेजों की संख्या समान होगी।
$\Rightarrow$ $(x, z) \in R$
अतः R, एक संक्रमक संबंध है।
इसलिए R, स्वतुल्य, सममित तथा संक्रमक संबंध है। अतः R, एक तुल्यता संबंध है।
art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 2
    सिद्ध कीजिए कि समुच्चय {1, 2, 3} में R = {(1, 2), (2, 1)} द्वारा प्रदत्त संबंध R सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।
    View Solution
  • 3
    सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A $में, $\mathrm{R}=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right): \mathrm{P}_{1}\right.$तथा $P_2$ की भुजाओं की संख्या समान है} प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।
    View Solution
  • 4
    सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय $A$ में, $\mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}, \mathrm{~T}_{2}\right.$ के समरूप है द्वारा परिभाषित संबंध $R$ एक तुल्यता संबंध है। भुजाओं $3, 4, 5$ वाले समकोण त्रिभुज $T_1,$ भुजाओं $5, 12, 13$ वाले समकोण त्रिभुज $T_2$ तथा भुजाओं $6, 8, 10$ वाले समकोण त्रिभुज $T_3$ पर विचार कीजिए। $\mathrm{T}_{1}, \mathrm{~T}_{2}$ और $T_{3 }$ में से कौन से त्रिभुज परस्पर संबंधित हैं?
    View Solution
  • 5
    यदि $f : R \rightarrow  R$ जहाँ $f(x) = x^2- 3x + 2$ द्वारा परिभाषित, है, तो $f(f(x))$ ज्ञात कीजिए।
    View Solution
  • 6
    मान लीजिए कि $A = {-1, 0, 1, 2}, B = {- 4, -2, 0, 2}$ और $f, g : A \rightarrow B,$ क्रमशः $f(x) = x^2- x, x \in A$ तथा $g(x) = 2\left|x-\frac{1}{2}\right|-1, x \in A$ द्वारा परिभाषित फलन हैं। क्या $f$ तथा $g$ समान हैं? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 7
    सिद्ध कीजिए कि R में $\mathrm{R}=\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
    View Solution
  • 8
    a * b = |a - b| तथा a o b = a, $\forall$ a, b $\in$ R द्वारा परिभाषित द्विआधारी संक्रियाओं *: R $\times$ R $ \rightarrow $ R तथा o : R $\times$ R $\rightarrow $ R पर विचार कीजिए। सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है। पुनः सिद्ध कीजिए कि सभी a, b, c $\in $ R के लिए a * (b o c) = (a * b) o (a * c) है। [यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित (Distributes) होती है।] क्या o संक्रिया * पर वितरित होती है? अपने उत्तर का औचित्य भी बतलाइए।
    View Solution
  • 9
    जाँच कीजिए कि क्या R में $ \mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
    View Solution
  • 10
    सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।
    View Solution