सिद्ध कीजिए कि R में $\mathrm{R}=\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
Exercise-1.1-4
Download our app for free and get started
A = R = वास्तविक संख्याओं का समुच्चय तथा $R=\{(a, b): a \leq b\}$ स्वतुल्य संबंध के लिए, चूँकि प्रत्येक वास्तविक संख्या अपने से छोटी या अपने बराबर हो सकती है। $\therefore (x, x) \in R, \forall x \in A$ अतः R, स्वतुल्य संबंध है। सममित संबंध के लिए, चूँकि 2, 3 से छोटी वास्तविक संख्या है। $\therefore (2,3) \in R$ लेकिन 3, 2 से छोटी वास्तविक संख्या नहीं है। $(3,2) \notin R$ अतः R सममित संबंध नहीं है। संक्रमक संबंध के लिए, मान लीजिए (a, b)$\in R$ तथा (b, c)$\in R$ $\Rightarrow a \leq b$ तथा $ b \leq c$ $\Rightarrow a \leq c \Rightarrow(a, c) \in R$ अतः R संक्रमक संबंध है। इसलिए, R, स्वतुल्य तथा संक्रमक संबंध है लेकिन सममित संबंध नही है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।
मान लीजिए कि समस्त $n \in \mathbf{N} $ के लिए द्वारा परिभाषित एक फलन f: $\mathbf{N} \rightarrow \mathbf{N}$ है। बतलाइए कि क्या फलन f एकैकी आच्छादी (bijective) है। अपने उत्तर का औचित्य भी बतलाइए।
सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A $में, $\mathrm{R}=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right): \mathrm{P}_{1}\right.$तथा $P_2$ की भुजाओं की संख्या समान है} प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।
निम्नलिखित प्रकार से समुच्चय $\{0, 1, 2, 3, 4, 5\}$ में एक द्विआधारी संक्रिया $^*$ परिभाषित कीजिए
सिद्ध कीजिए कि शून्य $(0)$ इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव $a \neq0$ व्युत्क्रमणीय है, इस प्रकार कि $6 - a, a$ का प्रतिलोम है।
मान लीजिए कि $XY-$तल में स्थित समस्त रेखाओं का समुच्चय $L$ है और $L$ में $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)\right.: \mathrm{L}_{1}$ समान्तर है $L_2$ के द्वारा परिभाषित संबंध R है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है। रेखा $y = 2x + 4$ से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y): x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या f एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
किसी प्रदत्त अरिक्त समुच्चय $X$ के लिए मान लीजिए कि $*: P(X) \times P(X) \rightarrow P(X), $जहाँ $A * B = (A - B) \cup (B - A), \forall A, B \in P(X)$ द्वारा परिभाषित है। सिद्ध कीजिए कि रिक्त समुच्चय $\phi,$ संक्रिया $*$ का तत्समक है तथा $P(X)$ के समस्त अवयव $A$ व्युत्क्रमणीय है, इस प्रकार कि $A^{-1} = A..$