$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O ; \Delta H = -2900 \,KJ/mole $
$2Al + C{r_2}{O_3} \to A{l_2}{O_3} + 2Cr$
$\Delta H = - 98.7\,{\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} S{O_3} + {H_2}O \to {H_2}S{O_4};\Delta H = - 130.2{\mkern 1mu} \,kJ;$
${H_2} + \frac{1}{2}{\mkern 1mu} {O_2} \to {H_2}O;{\Delta _H} = - 287.3{\mkern 1mu} \,kJ$
તો $298\, K$ એ $H_2SO_4$ ની નિર્માણ એન્થાલ્પી ............. $\mathrm{kJ}$ માં શોધો.
$(I)$ ધનનુ ગલન $(II)$ વાયુઓને મિશ્ર ક્રરવા
$(III)$ વાયુનુ સંકોચન $(IV)$ વાયુનુ વિસ્તરણ
${X_{\left( g \right)}} + {e^ - } \to X_{\left( g \right)}^ - $
$2Ag_{(aq)}^ + + c{d_{(s)}} \to cd_{(aq)}^{2 + } + 2A{g_{(s)}}$
$CH _{4}+2 O _{2} \rightarrow CO _{2}+2 H _{2} O (\Delta H =-891 kJ / mol)$
$KC{l_{\left( s \right)}} + 20{H_2}O \to KCl\,\left( {20\,{H_2}O} \right);\Delta H = + 15.90\,kJ$
$KC{l_{\left( s \right)}} + 200{H_2}O \to KCl\,\left( {200\,{H_2}O} \right);\Delta H = + 18.58\,kJ$
${C_{\left( {graphite} \right)}} + {O_{2\left( g \right)}} \to C{O_{2\left( g \right)}}\,;\Delta H = - 393.5\,kJ$
${H_{2\left( g \right)}} + 1/2{O_{2\left( g \right)}} \to {H_2}{O_{\left( l \right)}}\,;\,\Delta H = - 286.2\,kJ$
${C_2}{H_{4\left( g \right)}} + 3{O_{2\left( g \right)}} \to 2C{O_{2\left( g \right)}} + 2{H_2}{O_{\left( l \right)}}\,;\,\Delta H = - 1410.8\,kJ$
$\Delta H_f^o\left( {CO} \right) = - 110.5\,kJ\,mo{l^{ - 1}};$
$\Delta H_f^o\left( {C{O_2}} \right) = - 393.5\,kJ\,mo{l^{ - 1}}$
$(i)$ $NH_3$ $_{(g)} + aq$ $\rightarrow$ $NH_3$ $_{(aq)}$, $\Delta H$ $= -8.4 \,Kcal.$
$(ii)$ $HCl_{(g)} + aq$ $\rightarrow$ $HCl{(aq)}$, $\Delta H =$ ${-1}7.3\, Kcal.$
$(iii)$ $NH_3$ $_{(aq)} + HCl_{(aq)}$ $\rightarrow$ $NH_4Cl $ $_{(aq)}$, $\Delta H = -12.5\, Kcal$.
$(iv)$ $NH_4Cl$ $_{(s)} + aq$ $\rightarrow$ $NH_4Cl$ $_{(aq)}$, $\Delta H = +3.9 \,Kcal.$
$H_2$$_{(g)} +$ $1/2O_2$ $_{(g)}$ $\rightarrow$ $H_2$$O$$_{(l)}$; $\Delta H= -$ $285.77\, KJ\, mol$$^{-1}$; $H_2$$_{(g)} +$ $1/2O_2$$_{(g)}$ $\rightarrow$ $H_2O$ $_{(g)}$; $\Delta H$ $ = - 241.84\, KJ \,mol$$^{-1}$
$(i)\,\,{C_{12}}{H_{22}}{O_{11}}\,\, + \,\,12{O_2}\,\, \to \,\,12\,\,C{O_2}\, + \,\,11{H_2}O,\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - 5200.7\,kJ\,mo{l^{ - 1}} $
$(ii)\,\,C\,\, + \,\,{O_2}\, \to \,\,C{O_2},\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,394.5\,\,kJ\,\,mo{l^{ - 1}}$
$(iii)\,\,{H_2}\,\, + \,\frac{1}{2}{O_2}\,\, \to \,\,\,{H_2}O,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,285.8\,kJ\,\,mo{l^{ - 1}}$
$CaO_{(s)}\,\, + \,\,{H_2}O_{(l)}\,\, \to \,\,Ca{(OH)_2}_{(s)}\,;\,\,\,........(i)$ $\,\Delta {H_{1.8\,^oC}} = \,\, - \,\,15.26\,\,K\,cal$
$H_2O_{(l)}\,$ $ \to $ ${H_{2{(g)}}}$ $+$ $\frac{1}{2}O_{2(g)}$ $\,\Delta {H_{1.8\,^oC}} = \,\, - \,\,68.37\,\,K\,cal$
$Ca_{(s)} + \frac{1}{2}O_{2(g)} = CaO_{(s)}$ $\,\Delta {H_{1.8\,^oC}} = \,\, \,\,-151.80\,\,K\,cal$
$H_2O$ $_{(l)}$ $\rightleftharpoons$ $H_2O$ $_{(g)}$ [$1$ વાતા દબાણે] $[ \Delta S = 120 \,JK^{-1}$ અને $\Delta H = +45.0\, KJ ]$
${C_{\left( {graphite} \right)}} + {O_{2\left( g \right)}} \to C{O_{2\left( g \right)}}\,;\,\Delta H = -393.5\,kJ$
${C_2}{H_{4\left( g \right)}} + 3{O_{2\left( g \right)}} \to 2C{O_{2\left( g \right)}} + 2{H_2}{O_{\left( l \right)}}\,;\,\Delta H = - 1410.9\,kJ$
${H_{2\left( g \right)}} + 1/2{O_{2\left( g \right)}} \to {H_2}{O_{\left( l \right)}}\,;\,\Delta H = - 285.8\,kJ$
$(ii)\,{H_2}(g)\,\, + \,\,C{l_2}(g)\,\, \to \,\,2HCl(\ell )\,\, + \,\,y\,KJ$ માટે નીચેનામાંથી કયુ વિધાન સાચુ છે ?
$(i)\,\,\Delta H_f^o\,\,of\,{H_2}{O_{(\ell )}}\, = \,\, - 68.3\,K\,\,cal\,\,mo{l^{ - 1}}$
$(ii)\,\,\Delta H_{comb}^o\,\,of\,{C_2}{H_2}\, = \,\, - 337.2\,K\,\,cal\,\,mo{l^{ - 1}}$
$(iii)\,\,\Delta H_{comb}^o\,\,of\,\,{C_2}{H_4}\,\, = \,\, - \,363.7\,\,K\,\,cal\,\,mo{l^{ - 1}} $
$(i)$ $N_2H_4$$_{(l)}$ $+$ $2H_2O_2$$_{(l)}$ $\rightarrow$ $N_2$$_{(g)}$ $+$ $4H_2O$$_{(l)}$; $\Delta r{H_1}^ \circ = - 818 \,kJ/mol$
$(ii)$ $N_2H_4$$_{(l)}$ $+$ $O_2$$_{(g)}$ $\rightarrow$ $N_2$$_{(g)}$ $+$ $2H_2O$$_{(l)}$; $\Delta r{H_2}^ \circ = - 622 \,kJ/mol$
$(iii)$ ${H_2}_{(g)}\,\, $+$ \,\,\frac{1}{2}\,{O_2}_{(g)}\,\, \to \,\,{H_2}O_{(l)}\,\,\,;\,\,{\Delta }r{H_3}^ \circ \, = \,\, - 285\,\,kJ/mol$
$2CO_{(g)} + O_{2{(g)}}$ $\rightarrow$ $2CO_{2{(g)}}$
કારણ : અચળ તાપમાન અને દબાણે રાસાયણિક પ્રક્રિયા ગીબ્સ ઉર્જાના ઘટાડાની દિશામાં સ્વયંભુ થાય છે.
$2CO + O_2 \rightarrow 2CO_2, \Delta H = - 560\,KJ.$ (આદર્શ સ્વરૂપમાંથી વાયુનું વિચલન થાય છે.$1\, atm - litre = 0.1\, KJ$)આ પ્રક્રિયા માટે, દબાણમાં $70\, atm $ થી $40\, atm$ ફેરફાર થાય છે. તો $500\, K$ એ $\Delta$$U$ નું મૂલ્ય ......$KJ$ શોધો.
${H_2}{O_{(g)}} + {C_{(s)}}\, \to \,\,C{O_{(g)}} + {H_{2(g)}}\,:\,\,\Delta H\, = \,\,131$ કિલોજૂલ $C{O_{(g)}} + \,\,\frac{1}{2}\,\,{O_{2(g)}} \to \,\,C{O_{2(g)}}\,:\,\,\Delta H\,\, = \,\, - 282$ કિલોજૂલ
${H_{2(g)}} + \frac{1}{2}{O_{2(g)}} \to \,{H_2}{O_{(g)}}\,:\,\Delta H\,\, = \,\, - 242\,\,$ કિલોજૂલ
$C_{(g)} + O_2$$_{(g)}$ $\to$ $CO_2$$_{(g)}$ : $\Delta H = x$ કિલોજૂલ