$(1)$ બળની વિદ્યુત રેખા ઘનતા આપેલ બિંદુ આગળ વિદ્યુત તીવ્રતા સદિશ $E$ ના મૂલ્યથી સ્વતંત્ર હોય છે.
$(2)$ બળની વિદ્યુત રેખા ઘનતા આપેલ બિંદુ આગળ તેના વિદ્યુત તીવ્રતા સદિશ $E$ ના સમપ્રમાણમાં હોય છે.
$(3)$ વાસ્તવમાં વિદ્યુતક્ષેત્ર રેખાઓ મળતી નથી. તે માત્ર વિદ્યુત ક્ષેત્રની આલેખીય રજૂઆત જ છે.
$(4)$ વાસ્તવમાં વિદ્યુત ક્ષેત્ર રેખાઓ મળે છે.
( $k$ ને કુલંબના અચળાંક તરીકે લો.)
સપાટી $s$ માંથી પસાર થતું આ વિદ્યુતભારોની ગોઠવણીને કારણે સંકળાયેલ ફ્લક્સ...........છે.
કથન $A$: $30 \times 10^{-5}\,Cm$ દ્વિધ્રુવીની ચાકમાત્રા ધરાવતા વિદ્યુત દ્વિધ્રુવીને બંંધ સપાટીમાં આવરતા તેમાંથી બહાર આવતું ચોખ્ખુ ફલકસ શૂન્ય હોય.
કરણ $R$: વિદ્યુત દ્રીધ્રુવી બે સમાન અને વિરુદ્ધ વીજભાર ધરાવે છે.
ઉપરના વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો માંથી સાચો જવાબ પસંદ કરો.
$\left(\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,N m ^2\,C ^{-2}, g=10\,m s ^{-2}\right)$
[$g =9.8 \,m / s ^{2}$ આપેલા ]
[Given : Permittivity of vacuum $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$
વિધાન $-I$ : એક બિંદુવત વિદ્યુતભારને વિદ્યુતક્ષેત્રમાં લાવવામાં આવે છે. જો વિદ્યુતભાર ધન હશે તો વિદ્યુતભારની નજીકના બિંદુ આગળ વિદ્યુતક્ષેત્ર વધશે.
વિધાન $-II$ : એક વિદ્યુત દ્વિ-ધ્રુવીને અસમાન (અનિયમિત) વિદ્યુત ક્ષેત્રમાં મૂકવામાં આવેછે. દ્વિ-ધ્રુવી પર સમાસ (પરિણામી) બળ કદાપિ શૂન્ય નહી થાય.
નીચે આપેલા વિકલ્પોમાંથી સાચો વિકલ્પ પસંદ કરો.
અનુસાર બદલાતી ગોલીય સંમિત વિદ્યુતભાર વહેંચણી વિચારો,જ્યાં $r ( r < R )$ એ કેન્દ્રથી અંતર છે (આકૃતિ જુઓ) $P$ બિંદુ આગળ વિદ્યુતક્ષેત્ર $......$ હશે.
$(a)$ ગાઉસિયન પૃષ્ઠમાં અંદર દાખલ થતી પૃષ્ઠ રેખા ઋણ ફ્લક્સ દર્શાવે છે.
$(b)$ $q$ વિદ્યુતભારને સમઘનના કેન્દ્ર પર મૂકવામાં આવે છે. બધા પૃષ્ઠમાંથી પસાર થતું ફ્લક્સ સમાન હશે.
$(c)$ સમાન વિદ્યુતક્ષેત્રમાં રહેલ શૂન્ય પરિણામી વિદ્યુતભાર ધરાવતા બંધ ગાઉસિયન પૃષ્ઠ સાથે સંકળાયેલ ફ્લક્સ શૂન્ય હોય.
$(d)$ જ્યારે વિદ્યુતક્ષેત્ર ગાઉસિયન પૃષ્ઠને સમાંતર હોય ત્યારે ફ્લક્સ અશૂન્ય હોય.
આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો.
($\sin 37^{\circ}=\frac{3}{5}$ લો)
$\left[ g =9.8 \,m / s ^{2}, \sin 30^{\circ}=\frac{1}{2}\right.$; $\left.\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]$
[ અત્રે $\hat{i}, \hat{j}$ અને $\hat{k}$ એ અનુક્રમે $x, y$ અને $z-$ અક્ષોની દિશામાં એકમ સદિશ છે.]
વિધાન $I :$ એક વિદ્યુત દ્વિધ્રુવીને પોલા ગોળાના કેન્દ્રમાં મૂકવામાં આવે છે. ગોળામાંથી પસાર થતા વિદ્યુત ક્ષેત્રનું ફલકસ શૂન્ય છે પરંતુ ગોળામાં ક્યાંય વિદ્યુત ક્ષેત્ર શૂન્ય નથી.
વિધાન $II :$ ઘન ધાત્વીક ગોળાની ત્રિજ્યા $'R'$ અને તેના પર રહેલો કુલ વિજભાર $Q$ છે.$r ( < R)$ ત્રિજ્યા ધરાવતા ગોલીય સપાટીના કોઈપણ બિંદુ પર વિદ્યુત ક્ષેત્ર શૂન્ય છે પરંતુ $‘r'$ ત્રિજ્યા ધરાવતા આ બંધ ગોલીય સપાટીમાંથી પસાર થતા વિદ્યુત ફ્લકસ નું મૂલ્ય શૂન્ય નથી.
ઉપરોક્ત વિધાનને અનુલક્ષીને આપેલ વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો :