अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए:
$\frac{d y}{d x}- 3y \cot x = \sin 2x$ ; जहाँ $y = 2$ तथा $ x = \frac{\pi}{2}$
अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए:
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$, जहाँ $y = 0$ तथा $x = 1$
किसी बैंक में मूलधन की वृद्धि $5\%$ वार्षिक की दर से होती है। इस बैंक में $₹1000$ जमा कराए जाते हैं। ज्ञात कीजिए कि $10$ वर्ष बाद यह राशि कितनी हो जाएगी? $(e^{0.5} = 1.648)$
किसी बैंक में मूलधन की वृद्धि $r\%$ वार्षिक की दर से होती है। यदि $100$ रुपये $10$ वर्षों में दुगुने हो जाते हैं, तो $r$ का मान ज्ञात कीजिए। $(log_e2 = 0.6931).$
एक वक्र के किसी बिंदु $(x, y)$ पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु $(-4, -3)$ से मिलाने वाले रेखाखंड की प्रवणता की दोगुनी है। यदि यह वक्र बिंदु $(-2, 1)$ से गुज़रता हो, तो इस वक्र का समीकरण ज्ञात कीजिए।
किसी गाँव की जनसंख्या की वृद्धि की दर किसी भी समय उस गाँव के निवासियों की संख्या के समानुपाती है। यदि सन् 1999 में गाँव की जनसंख्या 20,000 थी और सन् 2004 में 25,000 थी, तो ज्ञात कीजिए कि सन् 2009 मे गाँव की जनसंख्या क्या होगी?
बिंदु $(0, 2)$ से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु के निर्देशांकों का योग उस बिंदु पर खींची गई स्पर्श रेखा की प्रवणता के परिमाण से $5$ अधिक है।
मूलबिंदु से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु $(x, y)$ पर स्पर्श रेखा की प्रवणता उस बिंदु के निर्देशांकों के योग के बराबर है।
दर्शाइए कि अवकल समीकरण $\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x =\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y$ समघातीय है और इसका हल ज्ञात कीजिए।
अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए: $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0$, y = 0 जब x = 1
अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए:
$\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] dx + x dy = 0, y = \frac{\pi}{4}$ जब $x = 1$
किसी जीवाणु समूह में जीवाणुओं की संख्या 1,00,000 है। 2 घंटों में इनकी संख्या में 10% की वृद्धि होती है। कितने घंटों में जीवाणुओं की संख्या 2,00,000 हो जाएगी, यदि जीवाणुओं के वृद्धि की दर उनके उपस्थित संख्या के समानुपाती है।
एक गोलाकार गुब्बारे का आयतन, जिसे हवा भरकर फुलाया जा रहा है, स्थिर गति से बदल रहा है यदि आरंभ में इस गुब्बारे की त्रिज्या $3$ इकाई है और $3$ सेकेंड बाद $6$ इकाई है, तो t सेकेंड बाद उस गुब्बारे की त्रिज्या ज्ञात कीजिए।
बिन्दु $(0, 1)$ से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए, यदि इस वक्र के किसी बिंदु $(x, y)$ पर स्पर्श रेखा की प्रवणता, उस बिंदु के $x$ निर्देशांक $($भुज$)$ तथा $x$ निर्देशांक और $y$ निर्देशांक $($कोटि$)$ के गुणनफल के योग के बराबर है।
दर्शाइए कि अवकल समीकरण $2ye^{\frac{x}{y}}dx + (y - 2x e^{\frac{x}{y}})dy = 0$ समघातीय है और यदि, $x = 0$ जब $y = 1$ दिया हुआ हो तो इस समीकरण का विशिष्ट हल ज्ञात कीजिए।
यदि $\vec{a}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ और $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ तो $(\vec{a}+3 \overrightarrow{\mathrm{b}}) \cdot(2 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})$ का मान है :
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*